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13.1  AIM AND BACKGROUND

The development of high energy physics and chemistry leads to a neces-
sity of seeking for and employing many-particle relativistic equations. A 
goal of this paper is to propose some relativistic models and to give meth-
ods of their solving for heavy atoms. A new relativistic approach in the 
theory of heavy atoms has been suggested in momentum representation. 
A scalar relativistic equation as an approximation to the equation system 
has been suggested, taking into account the spin-relativistic kinematics of 
atomic electrons.

13.2  INTRODUCTION

The problem studies on the electronic structure of heavy atoms face some 
theoretical difficulties in describing physical behavior of many-particle 
system in accordance with the relativity theory. Spectroscopy of heavy 
atoms has given a large amount of data that needs proper interpretation 
on the base of relativistic theoretical models. So far, there does not exists 
many-electron relativistic approaches for Coulombic systems, from which 
one could obtain approximations (even Hartree–Fock models) for the pur-
pose of systematical study in the field of atomic and molecular spectrosco-
py and quantum chemistry. The development of high energy physics and 
chemistry leads to the necessity of seeking and employing many-particle 
relativistic equations. A goal of this paper is to suggest some relativistic 
models and to give methods of their solving for heavy atoms. Some efforts 
were be made for obtaining asymptotic properties of wave functions and 
spectra of many-electron stationary systems.

(i)	 Relativistic equation system in coordinate space of particles:
Classical energy for a system of free particles may be written as fol-

lows

	
2 2 2 4

1

n

k k
k

E p m 	 (13.1)

We may consider this expression like a root of some eigenvalue problem. 
For a system of non-interacting particles (electrons) this root is a sum of 
eigenvalues belonging to Dirac equations, or another one-particle relativ-
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istic equation system, for example, those in quaternionic representation. 
We use the both possibilities in our paper.

The main relation in relativistic physics connects energy and momen-
tum taking into account the twofold degeneracy by spin

	
22

2 2 2
2 0

E
p m c

c

 
- - =  

. 	 (13.2)

The one-particle Dirac system of four equations may be written as fol-
lows

	
( )
( )

( )
( )

2

2
.

-

g r g rc p mc
E

u r u rmc c p

s
s

    
=          	 (13.3)

The kinematic matrix differs from the original Dirac one up to an orthogo-
nal transformation of spinor components, but Eq. (13.3) is more conve-
nient for deriving spin-relativistic members to non-relativistic expression 
for the particle energy (we do not face fractions with singular denomina-
tors in the variable r, when a Coulombic potential is included). Equation 
(13.3) has four roots, of which two are negative and has no physical sense, 
however the eigenvalue spectrum proves to be unlimited and there does 
not exist a lower limit to formulate a variational principle for the Dirac 
equation directly. This is one of the difficulties in numerical analysis of the 
relativistic equations for many-particle systems in quantum mechanics.

(ii)	 Fourier-transformation to momentum space of particles:
The particle coordinates and momentum are conjugate variables in 

quantum mechanics. A transfer to the momentum representation for the 
wave equation can be made by the Fourier-transformation of the wave 
function and operators. One has 

	 ( ) ( ) ( )3 / 2 3
1 1

11

, , 2 exp , ,p p p r r r r
n n

n

n k k n k
kk

i dϕ p ψ-

==

 
= -  ∑ ∏∫  	 (13.4)

The Coulomb potential is transformed by the formula

	 1 3 24
pr

r
i

e r d pp
- - -=∫ 	 (13.5)

The inverse Fourier-transformation of the Coulomb potential is calculated 
as follows
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2 1 2 32

pr
p

i
r e p dp - -= ∫ 	  (13.6)

The convolution theorem allows one to calculate the Fourier-transforma-
tion of the two functions product

	 ( ) ( ) ( ) ( ) ( )3 3exp pr r r r k p k ki f g d f g d- = -∫ ∫ 	 (13.7)

where

	 ( ) ( ) ( ) ( )3/ 2 32 expk kr r rf i f dp -= -∫ 	  (13.8)

A proof of the formulae given can be made by using the properties of the 
Dirac δ-function

	 ( ) ( ) ( )3 32 expr pr pi dd p -= ∫ .	 (13.9)

The Fourier-transformation of the Dirac equation converts the momentum 
into a c-number, while the product of the potential function and a bispinor 
turns into an integral in which the first one becomes the kernel of the equa-
tion integral operator. Write down the integral Dirac equation for hydro-
gen atom (the proton is considered fixed).

	
( )
( ) ( )( ) ( )

( )
2

2
- , .

-

g p g pc p mc
E V p p

u p u pmc c p

s
s

    
= ′          	  (13.10)

Here the product of the potential function and the bispinor ought to be 
understood like the integral expression

	 ( ) ( )
( ) ( )

( )
( )

2
3

2 2

1 -
, .

2 -

g p g pZe
V p p d p

u p u pp pp
   ′

=′ ′   ′   ′∫ 	  (13.11)

An analogous Fourier-transformation allows one to write down in the mo-
mentum space many-particle relativistic equations, which are given below.

(iii)	Eigenvectors of the Dirac kinematic matrix in the momentum 
space:

The relationship Eq. (13.2) can be considered as a determinant of an 
eigenvalue problem with the Dirac matrix B and a column-function t  
with four components
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	 B
E

,	 (13.12)

where the matrix B is as follows

	

0

0

0

0

0

0

0

0

B

z

z

z

z

m c p p

m c p p

p p m c

p p m c

-

+

-

+

 
 - =
 -
 - - 

	 (13.13)

with the momentum cyclic components. One can easily verify that the 
decision problem condition for the homogeneous Eq. (13.12)

	
4det B I 0

E

c
 - =  

,	 (13.14)

where I
4
 is the unit matrix of the order four, coincides with the Eq. (13.2). 

When the momentum components in the matrix given are c-numbers, then 

the column-function ( )tϕ  represents a set of four numbers, which are ex-
pressed via the B matrix elements.

Introduce a vector matrix (Clifford unit vector) 

	 z x y

x y z

n n in

n in n
s

- 
=  + - 

,	 (13.15)

Where the matrix elements are cyclic unit vectors of the Cartesian coordi-

nate system, 1-=i , and briefly n
–
=n

x
 – in

y
, n

+
=n

x
 + in

y
, then the matrix 

(13.15) may be written concisely as 

	
-z

z

n n

n n
s

+

 
=  -  ,	 (13.16)

or on the basis of Pauli matrices

	
x x y y z zn n ns s s s= + + .	 (13.17)

The matrix B may be written like a block matrix of the order 2

	 0 2

0 2-

m cI p
B

p m cI

s
s

 
=   

,	 (13.18)
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where 2

1 0
I

0 1

 
=  

   and the momentum are given in the Clifford algebra.
To diagonalize the matrix B one may notice that the blocks along the 

main diagonal are proportional to the unit matrix of the order two, there-
fore they are invariable. If one diagonalizes first the momentum blocks, 
which are Hermite matrices,

	
-

-
z

z

p p
p

p p
s

+

 
Π = =  

 
.	 (13.19)

the matrix П may be written down via the eigenvalue matrix

	 1

2

0

0

λ
λ

 
Λ =  

 
,	 (13.20)

where p=1λ , p-=2λ , 222
zyx pppp ++= , are spectral decomposi-

tion

	 1 1C C+Π = Λ ,	 (13.21)

and the cross indicates the Hermite conjugation of the eigenvector unitary 

matrix С
1
. Solving the matrix equation λΠ =c c , one obtains the eigen-

vector matrix sought for

	 1

2 2 ( )

22 ( )

z

z

z

z

p p p

p p p p

p p p

pp p p

-

+

 + -
 

+ =  + 
 + 

C .	 (13.22)

Transformation

	
1

1
1

0

0

C
U

C

 
=  

 
	 (13.23)

brings the matrix П, as has been said earlier, into the diagonal form without 
changing the diagonal blocks in Eq. (13.18). As a result the matrix B has 
been transformed to a simpler form with a more number of zero elements
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0

0
1 1

0

0

0 0

0 0 -

0 - 0

0 - 0 -

m c p

m c p
U BU

p m c

p m c

+

 
 
 =
 
 
 

.	 (13.24)

Besides the zeros are arranged in the chess order, so the permutation of 
the second and third rows and columns of the matrix given by the matrix

	 23

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

P

 
 
 =
 
 
 

,	 (13.25)

brings the matrix B into a block-diagonal form

	

0

0
23 1 1 23

0

0

0 0

- 0 0

0 0 -

0 0 - -

m c p

p m c
P U BU P

m c p

p m c

+

 
 
 =
 
 
 

, 	 (13.26)

with the blocks of like structures. Usage of the orthogonal transformation

	 2

2

I 0
F

0 F

 
=   

,	 (13.27a)

where the matrix I
2
 is the diagonal unit matrix of the order two, F

2
 is the 

diagonal of the form

	
2

1 0
F

0 1

 
=  - 

,	 (13.27b)

brings the matrix (13.26) into the matrix with identical blocks, which are 
diagonalized by the same orthogonal matrix С

2
 of a general form

	 2

cos sin
C

sin cos

ϕ ϕ
ϕ ϕ

- 
=  

 
.	 (13.28)

The eigenvalues of the block matrices (13.26) are as follows
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	 222
0

1 pcm
c

E += , 	 (13.29)

For the angle ϕ  a relationship 
0

2
p

tg
m c

ϕ =  takes place, from which one 

finds, using the known relationship 
2

2
2

1

t
tg

t
ϕ =

+
, the parameter t tgϕ=

	 2 2 2
0 0

p
t

m c m c p
=

+ + .	 (13.30)

Thus, the elements of the orthogonal matrix (13.28) are calculated as fol-
lows

	 2

1
cos

1 t
ϕ =

+ , sin costϕ ϕ= 	 (13.31

As a result, the matrix B is brought into the diagonal form with the eigen-
values Eq. (13.29) with the help of the set of four matrix transformations

	

1

2
2 23 1 1 23 2

1

2

0 0 0

0 0 01
U FP U BU P FU

0 0 0

0 0 0

E

E

Ec

E

+

 
 
 =
 
 
 

 ,	 (13.32)

where the orthogonal matrix U
2
 is as follows

	 2
2

2

C 0
U

0 C
 

=  
 

.	 (13.33)

Considering the first column of the eigenvector matrix for the matrix B, 
one gets normalized 1 eigenspinor
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2 2 2
0 0

2 2 2 2 2
0 0

2 2 2
0 0

2 2 2 2 2
0 0

1

2 2 2 2 2
0 0

2 2 2 2 2
0 0

2 ( )

2 ( ) ( )

2 ( )

2 ( ) ( )

z

z

z

z

m c m c pp p

p p m c m c p

m c m c pp

p p p p m c m c p

p p p

p p m c m c p

p p

p p p p m c m c p

ϕ

+

+

 + ++
 
 + + +
 
 + +
 

+ + + +=  
 +
 
 + + +
 
 
 + + + + 

.	 (13.34)

Denoting the matrix elements in Eq. (13.22) by с
11

, с
12

. с
21

, с
22

, sine and 
cosine in the matrix (13.28) by s and c, we can write down an explicit form 
of the normalized eigenvectors matrix for the matrix B

	

11 11 12 12

21 21 22 22
1 23 2

11 11 12 12

21 21 22 22

U P FU

ñ ñ ñ s c c c s

c c c s c c c s

c s c c c s c c

c s c c c s c c

- - 
 - - =
 - -
 - - 

.	 (13.35)

Here, the letter c cannot be confused with the light velocity in the matrix 
B (13.13).

In the nonrelativistic limit, when the momentum becomes much less 

than the quantity m
0
c, the “positron” components of the column 1ö  tend 

to become zero. In this case, the parameter Eq. (13.20) is equal to zero, 
and the one obtained in accordance with Eq. (13.31) and that in the matrix 
(13.35), the с =1 and s = 0. The elements с

ij
 do not depend on the radial 

momentum and the matrix (13.22) may be expressed via the angle vari-
ables θ, φ, which define a direction of the particle momentum vector

1

1 cos 1 cos cos sin
2 22 2

1 cos 1 cos sin cos
2 22 2

ii

ii

ee
C

ee

ϕϕ

ϕϕ

θ θθ θ

θ θθ θ

--      + - --          
   = =
      - +

           

	 (13.36)

Thus, the nonrelativistic bispinor is of the form

AUTHOR COPY
FOR NON-COMMERCIAL USE

9781771880510



170	 Chemical Technology

	

11

21
1 0

0

c

c
ϕ

 
 
 =
 
  

.	 (13.37)

Analogously we obtain another columns for the nonrelativistic bispinors 
of which only one has a physical meaning and correspond to the positive 
eigenvalue of the matrix B. The eigenvectors Eq. (13.35) will be used 
below.

(iv)  Reduction of the bispinor Dirac equation to an integral form:
A solution of the integral Dirac equation is given in [1]. Here we sug-

gest a general method of transformation the relativistic equations to a con-
venient integral form for their analysis. Making use of the theorem from 
the matrix theory, Hermitian matrix A can be written down like the spec-
tral resolution over eigenvectors с

k
 as follows

	 *

1

A=
n

k k k
k

c cλ
=

∑  .	 (13.38)

In this formula the wave line denotes the row-vector. A number between 
the vectors is their eigenvalue of the matrix. In an analogous manner 
one can write down the kinematic matrix in the left hand side of the Eq. 
(13.43), taking into consideration that it is the c-number matrix,

	
( )
( ) ( )( ) ( )

( )
4

*

1

- , .k k k
k

g p g p
c c E V p p

u p u p
λ

=

   
= ′      ∑  	 (13.39)

The product of a vector row and a bispinor column is a scalar function of 
the momentum

	
( )
( ) ( ).
p

c p
pk k

g

u
ϕ

 
=  

  	 (13.40)

The eigenvectors с
k
 are given by the formulae (13.34) and (13.35). The 

eigenvalues of the Dirac equation matrix are equal to (where m is the elec-
tron rest mass)

	 2 4 2 2 2 4 2 2
1,3 2,4,    .m c c p m c c pλ λ= + = - + 	 (13.41)
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Multiplying the Eq. (13.39) to the left by the vector row 1c , and taking into 
account the notation Eq. (13.40) and the orthogonality of the Dirac matrix 
eigenvectors, we arrive at a scalar equation relative to the function φ

1
(p)

	 ( ) ( )
( )

( ) ( )
2

2 4 2 2 3
1 12 2

1
.

2
p c p p p

p p

Ze
m c c p E dϕ ψ

p
+ - = ′ ′

- ′∫  	 (13.42)

The scalar product of the vector-row and vector-column ( ) ( )1c p pψ ′  under 
the integral is a scalar function depending on the two vector arguments p 
and p′, therefore one ought to transform this product to the scalar func-

tions ( )kϕ ′p . Note that the unit matrix of the order four can be represented 
like the decomposition over eigenvectors c

k
 of the matrix (13.35). One has 

got

	 ( ) ( )
4

4
1

I c p c pk k
k

∗

=

= ′ ′∑  .	 (13.43)

Substituting this matrix into the integral of Eq. (13.42), we arrive at the 
integral equation as follows

	 ( ) ( ) ( )
( )

( ) ( )
2 4

12 4 2 2 3
1 2 2

1

.
2

c p
p c p p p

p p
k k

k

Ze
m c c p E dϕ ϕ

p
∗

=

+ - = ′ ′ ′
- ′

∑∫


	 (13.44)

In the same way the equations for the functions ( ) ,  2,  3,  4k kϕ =p , can 
be obtained, with the difference that the radicals of the second and fourth 
equations will be taken with the minus sign. The kernels of the integral 
equations obtained are scalar functions, because the product of vector-row 
and vector-column is the vector scalar product. As we see that these sca-
lar multipliers are factorized by the variables p and p′, hence subsequent 
solving of the relativistic equations system Eq. (13.42) can be made by 
the factorization of the Coulombic part of the integral operator kernel. 
This problem can be solved with the help of Fock resolution of that func-
tion over four-fold spherical harmonics [2], which used while solving the 
Schrödinger equation for the hydrogen atom.

The nonrelativistic approximation takes place, provided there is low 
electron momentum as compared with mc, and where the eigenvector c

k
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becomes unit and the scalar function ( )1ϕ p  remains only in the integral 

Eq. (13.44). Representing the radical as a series in /p mc  and restriction 

of the latter two first terms, with denoting 2E mcε = - , one arrives at the 
Schrödinger integral equation for an electron in the hydrogen atom

	 ( ) ( )
( )

2 2
1 3

1 2 2
.

2 2

p
p p

p p

p Ze
d

m

ϕ
ε ϕ

p
′ 

- = ′   - ′∫ 	 (13.45)

Solving this equation allows one to make evident the O(4) symmetry of 
the Coulombic problem in wave mechanics of the hydrogen atom, estab-
lished in the classical Kepler problem [4, 5]. In the next section a solution 
of that integral equation will be obtained with the help of four-fold spheri-
cal harmonics.

(v) Solving the Schrödinger integral equation for the hydrogen atom:
We seek a solution of Eq. (13.9) by the Fock method [2], so that this 

problem for each electronic state becomes equivalent to that for the four-
dimensional quantum rotator:

	 ( ) ( ) ( )2
2 2 2 3
0   p p p p pp p dψ p ψ

--+ = - ′ ′ ′∫ 	 (13.46)

where 0p  is the mean quadratic momentum, and 2
0 2 0p ε= - >  for 

bound states. The last condition means that the form 2 2
0p p+  has the el-

liptic kind. 

Introducing a four-dimensional momentum 2 2 2
4 0p p p= +  we define 

an angle variable α, then

	 ( ) ( )2 2 2 2
0 0cos /p p p pa = - + , ( )2 2

0 0sin 2 /p p p pa = + ,	 (13.47)

where [ ]0,  a p∈ . The relations (13.47) are the stereographic projection 
of the momentum p . The angle α together with the usual spherical angles 

,  θ ϕ  of the momentum p  define the surface of the unit sphere in 4R . 
The distance between two points of the sphere is given by the arc length 
of the great circle, which goes through those points. For the unit sphere 
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4R  this distance is equal to the central angle ω (in radians) between the 
radius-vectors of the points. So, cosω  is as follows

	 cos cos cos sin sin cosω a a a a g= +′ ′ ,	 (13.48)

where

	 ( )cos cos cos sin sin cosg θ θ θ θ ϕ ϕ= + -′ ′ ′ .	 (13.49)

Expressing the distance square between points p  and p′  in terms of 
cosω , and making use of the relation (13.47), we get

( ) ( ) ( )2 2 22 22 cos  p p p p pp p pg- = + - = + -′ ′ ′ ′

	 ( ) ( ) ( )( )1 22 2 2 2
0 0 02   sin sin cosp p p p p a a g

-
- + + =′ ′  	 (13.50)

( ) ( ) ( )( ) ( )( )
( ) ( )( )

22 2
01 22 2 2 2

0 0 0 22 2 2
0 0

4
4   2sin sin cos

 

p p p
p p p p p

p p p p
a a g

-
 + ′
 = + + -′ ′ + + ′ 

A direct test gives

	

( )( )
( ) ( )( )

22 2
0

22 2 2
0 0

4
2 2cos  cos

 

p p p

p p p p
a a

+ ′
- =′

+ + ′ .	 (13.50a)

With the help of the relationships given, we obtain the formula sought out

	 ( ) ( ) ( ) ( )( ) ( )22 22 2 2
0 0 02   2 2cosp p p p p p p ω-- = + + -′ ′ 	 (13.51)

Write down the volume element 3d p  in spherical coordinates

	 3 2  sin  pd p dp d dθ θ ϕ= .	 (13.52)

Using the relationships (13.47) we obtain
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	 ( ) ( ) 1/ 22 2
0 0cos / 2 p p pa

-
= + , ( ) ( ) 1/ 22 2

0sin / 2 p p pa
-

= +  ,	(13.53)

then the radial momentum can be expressed via the angle a

	 ( )0  tg / 2p p a= ,	 (13.54)

from which the differential dp  can be easily calculated

	 ( ) 12
0 2 cos / 2dp p da a

-
 =   .	 (13.55)

The volume element acquires the form in hyperspherical coordinates as 
follows

	 ( ) ( )333 2 2 2
0 02 sin  sin   pd p p p d d da θ a θ ϕ-= + .	 (13.56)

Denote the hypersurface element on the four-dimensional sphere

	 2
4 sin  sin   d d d da θ a θ ϕΩ = ,	 (13.57)

then the relationship (13.56) takes the form

	
( ) ( )333 2 2

0 0 42pd p p p d
-= + Ω

.	 (13.58)

For the wave function one obtains

	 ( ) ( ) ( )22 2
0 , , p a p pψ a θ ϕ

-
= + Ψ ,	 (13.59)

where the coefficient 3/2 1 5/2
02a pp -= . With the help of the formulae 

(13.51), (13.58), and (13.59) the Schrödinger Eq. (13.46) is transformed 
to the Fock integral equation for the hydrogen atom

	 ( ) ( ) ( ) ( )112 2
0 4, , 2  4sin / 2 , ,p da θ ϕ p ω a θ ϕ

--
 Ψ = Ψ Ω′ ′ ′ ∫ .	 (13.60)

On the unit of hypersphere, the square of the distance between two points 
is
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	 ( ) ( )22

1 2D = -ñ ñ ñ ,	 (13.61)

where   , 21 ññ  are unit vectors from the sphere center to its surface points. 
The Cartesian coordinates of a point on the 4-sphere can be expressed via 
the angle variables according to the formulae

sin  sin  sint a θ ϕ= , sin  sin  cosu a θ ϕ=  ,

	 sin  cosv a θ= , cosw a= .	  (13.62)

Taking into account that

	 2 2 2 2 2 1t u v w ρ+ + + = = ,	 (13.63)

one obtains

	 ( ) ( ) ( )22 2
1 2 2 2cos  4sin / 2ω ωD = - = - =ñ ñ ñ ,	 (13.64)

that coincides with the denominator of the function under the integral in 
Eq. (13.60)

Writing down the Laplace equation in 4R ,

	 ( )
2 2 2 2

2 2 2 2
,  ,  ,  t u v w

t u v w

 ∂ ∂ ∂ ∂
+ + + Ψ ∂ ∂ ∂ ∂ 

 = 0.	 (13.65)

We see this equation and the integral Eq. (13.60) are equivalent on the 
unit sphere surface. Solutions of these equations are the hyperspherical 
harmonics and are [2, 3] as follows

	 ( ) ( ) ( ),  ,   ,  l
nlm n lmYa θ ϕ a θ ϕΨ = Π ,	 (13.66)

where

	 ( ) ( ) ( ),  ,   ,  l
nlm n lmYa θ ϕ a θ ϕΨ = Π 	 (13.67)

is a normalized to one spherical harmonic, provided ( )  m
lP θ  being a Leg-

endre associated polynomial, and ( )  l
n aΠ  being a Gegenbauer associated 
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polynomial, which is connected with the Gegenbauer polynomial by a re-
lationship

	 ( ) ( )1
1 sin cosl l l

n nl n lb Ca a a+
- -Π = ,	 (13.68)

where lmb , nlb  are the normalization coefficients:

( )( ) ( )
( )

1/2

/2  !2 1
1  

2  !

m m

lm

l ml
b

l m

+  -+
= -  

+  
,

	 ( ) ( ) ( ) 1/21 1/21 2 2 ! 1  !/  !
n l l

nlb i l n n l n lp+= -  - - +  
.	 (13.69)

An explicit form of the function ( ), , nlm a θ ϕΨ  can be found if one expands 

the function ( )[ ] 12 24
-ω /sin  into a series over the Gegenbauer polynomi-

als. Indeed, a series takes place [4, 5] representing a generalization of the 
Legendre series for the generating function

( ) ( )2 2 2
1 2 1 2 1 2 2  cos

λλ ρ ρ ρ ρ ω
--- = + - =ñ ñ

	 ( )
( )

( )
1

2 2 2 2
1 2 1 2

12 11
1 1 2

   
cos

2   

n

nnn
n

C

λ

λ
λλ

ρ ρ ρ ρ
ω

ρ ρ

+ -
∞

-+ -+ -
=

+ - -
= ∑ ,	 (13.70)

where ( )1 cosnCλ ω-  is a Gegenbauer polynomial, λ  is a real number.
Taking into account the addition theorem [3] for the Gegenbauer poly-

nomials

( )cos cos sin sin cosp
qC a a a a g′ ′+ =

( )
( )

( ) ( ) ( )
( )

2 2

2
0

2 1 2   ! 2 2 1
 

2

lq

l

p p l q l l p

q l pp =

Γ - Γ + - + -
= ×

Γ + +Γ  
∑

	 ( ) ( ) ( )1/2sin cos sin cos  cosl p l l p l p
q l q l lC C Ca a a a g+ + -

- -× ′ ′ 	 (13.71)

we see it allows one to obtain a bilinear expansion of the kernel 

( ) 124sin / 2ω
-

    over the hyperspherical harmonics.
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	 ( ) ( ) ( )
1

12 1
4 4

1 0

4sin / 2  
n l

nlm nlm
n l m l

nω
∞ -- - ∗

= = = -

  = Ψ Ω Ψ Ω′  ∑ ∑ ∑ . 	 (13.72

Substituting this expansion into the Fock equation, then multiplying both 
parts of the equation by a complex conjugated hyperspherical function, 
and integrating over four-sphere surface, provided the hyperspherical har-
monics orthonormality,

	 ( ) ( )
2

2
4 4 4

0 0 0

  2nlm n l m nn ll mmd
p p p

p d d d∗
′ ′ ′ ′ ′ ′Ψ Ω Ψ Ω Ω =∫ ∫ ∫ ,	 (13.73)

where nnd ′  is the Kronecker symbol, we obtain for the parameter 0p  the 
following value

	 1
0p n-= .	 (13.74)

The hydrogen atomic spectrum is calculated by the formula

	 2
0

1

2
pε = - .	 (13.75)

Thus, the problem on the discrete spectrum of the hydrogen atom has been 
solved completely.

The hydrogen atomic continuous spectrum is characterized by the pos-
itive parameter ε to which the harmonics on the both surfaces of a two-
sheeted hyperboloid correspond.

(vi)	A remark on solving the relativistic integral equation system in 
momentum space:

Considering the relativistic equation system for a hydrogen-like atom,

	 ( ) ( ) ( )
( )

( ) ( )
2 4

2 4 2 2 3
2 2

12
i

i k k
k

Ze
m c c p E dϕ ϕ

p
∗

=

+ - = ′ ′ ′
- ′

∑∫
c p

p c p p p
p p



, (i = 1, … ,4)	 (13.76)

and taking into account the factorization of the function ( ) ( )i kc c∗ ′p p  by 
the variables, one can reduce the problem to solving the integral equation 
with a degenerate kernel and thus to a system of linear algebraic equations 
with a Hermite matrix of coefficients. A diagonalization of this matrix will 
come up with a solution of the initial equation, because coefficients in a 
series over the basic functions of the kernel bilinear decomposition will 
be found. It is clear that due to the spherical symmetry of the problem, the 
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coefficient matrix in the equation system will acquire a block-diagonal 
form with finite block orders.

In addition, one can consider an approximate scalar equation for the 
first component φ

1
 that corresponds to the spinor function with the pre-

dominant first component of the bispinor for the positive energy value

	 ( ) ( ) ( ) ( )
( )

( )
2

1 12 4 2 2 3
1 12 2

.
2

Ze
m c c p E dϕ ϕ

p

∗ ′
+ - = ′ ′

- ′∫
c p c p

p p p
p p



	 (13.77)

This equation is an augmented one with respect to zero-spin integral equa-
tion when the bilinear kernel function becomes constant. In the given equa-
tion a modification of the Coulombic potential takes place in accordance 
with the relativistic kinematics by multiplying it into the bilinear by mo-
menta function, which is formed from the kinematic matrix eigenvectors

	 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 11 11 12 12 13 13 14 14c c c c c c c c∗ ∗ ∗ ∗ ∗= + + +′ ′ ′ ′ ′c p c p p p p p p p p p .	 (13.78)

The bilinear form components are given by the formula (13.34). One can 
see that while neglecting the “positron” components с

13
 and с

14
, we obtain 

the relativistic integral equation of the first order in energy with the spinor 
constituent unlike the second order as in energy Klein–Gordon equation 

(vii) 	Relativistic equations for a many-electron system in the momen-
tum space:

Some advantages of integral equations for a system of relativistic 
electrons are perceived while solving problems of electron scattering on 
atomic systems, the more so in experiments where electron momenta are 
measured. At the same time, as we have verified while researching the 
Dirac equation, in the momentum space one can easily pass to the nonrela-
tivistic model of particle mechanics and obtain the relativistic corrections 
in an explicit form.

Writing down the system of relativistic equations for an atom

	
4 4

1 1 1

I B I I =
n n n

q
a a ab

a a a b

V V E
= = > =

 
× × × × ⋅ Ψ + + ⋅ Ψ Ψ  ∑ ∑ ∑ 

,  	 (13.79)

	
2

2
2

2 -

q
q a
a q

a

c p mc I
B

mc I c p

s
s

 
=    ,	 (13.80)

where the index q points to the momentum being the differential operator.
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Multiplying this system to the left by the exponential

	
1

exp
n

k k
k

i
=

 
-  ∑ p r ,	 (13.81)

with the momentum being a c-number, and integrating the equations over 
electron coordinates, we arrive at the integral equation system

	

( )

( )
( ) ( )

4 4
1

3
3 /2

1 1 1

                           I B I

1
exp I = .

2

n

a
a

n n n
n

k k a abn
k a a b

i V V d E
p

=

= = > =

× × × × ⋅Φ +

   
+ - + ⋅ Ψ Φ      

∑

∑ ∑ ∑∫

p

p r r r p

 

	(13.82)

Here the kinematic matrix in the direct product consists of the c-numbers

	
2

2
2

2 -
a

a

a

c p mc I
B

mc I c p

s
s

 
=   

,	 (13.82a)

with the matrix I being of the order 4n. Representing the coordinate wave 
function (multispinor) under the integral as a Fourier-transformation, 

	 ( )
( )

( ) 3
3 /2

1

1
exp

2

n
n

k kn
k

i d
p =

 
Ψ = Φ′ ′ ′  ∑∫r p r p p ,	 (13.82b)

changing the order of integration by the coordinates and momenta in the 
system Eq. (13.49), and defining the Fourier-transformation for the poten-
tial function

	 ( )
( )

3
3

1 1 1 1

1
, exp exp

2

n n n n
n

k k a ab k kn
k a a b k

V i V V i d
p ′ ′

= = > = ′=

     
= - +′ ′          ∑ ∑ ∑ ∑∫p p p r p r r ,	(13.82c)

one obtains an integral equation system

	 ( ) ( ) ( ) ( )3
4 a 4

1

I ×…×B ×…×I , I =
n

n

a

V d E
=

⋅Φ + ⋅ ⋅Φ Φ′ ′ ′∑ ∫p p p p p p .	 (13.83)

The kinematic matrix in the left hand side of the equation can be repre-
sented as the spectral resolution into its eigenvectors as

	
4

4 a 4
1 1

I ×…×B ×…×I
nn

v v v
a v

λ∗

= =

=∑ ∑c c ,	 (13.84)
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where ( ) ( ), 2 4 2 2

1

1
n

l v a

v a
a

m c c pλ
=

= - +∑ , and ( ), 1 or 2l a v = , being dictated by the ap-

propriate eigenvector. A real state of a particle is described by the arithme-
tic root, as the length of the eigenvector is 4n. However, this is as demon-
strated with the Dirac equation, in the transformation discussed of all the 
roots of the matrix (13.84) participating.

By virtue of great multiplicity of the eigen-numbers (it may be com-
pared with composition of spins in atomic one-particle models) one ob-
tains 2n eigenvectors for the same eigenvalue as the arithmetic root. So this 
root gives the reasonable estimation for the electron system energy in an 
atom. All the rest, roots in which negative radicals enter, have no physical 
meaning, and they ought to be considered only like auxiliary algebraic 
constituents, while linearizing the kinetic energy operator of a particles 
system.

The Eq. (13.83) can be transformed to a new form, taking into account 
the relationship (13.84). Thus, in analogy with the Dirac equation, multi-

plying it to the left by the row eigenvector 1c  and using the orthonormality 
of the kinetic matrix eigenvectors, we arrive at the many-particle relativis-

tic integral equation over functions kχ .

	 ( ) ( ) ( ) ( ) ( ) ( )
4

* 3
1 1 1 1

1

,
n

n
k k

k

p V p p c p c p p d p E pλ χ χ χ
=

+ × × =′ ′ ′ ′∑∫  , 	 (13.85)

where ( ) 2 4 2 2
1

1

n

k
k

m c c pλ
=

= +∑p . The rest 4n − 1 integral equations of the sys-

tem have analogous forms. Each eigenvector can be written down in an 
explicit form, so an analysis of the kernel of the integral operator, which is 
cumbersome, can be made easily. As it may be seen, the kernel is factor-
ized with respect to the function-components of the eigenvectors. Reduc-
tion of the kernel to a degenerate one, amounts to a factorization of the 
potential function by variables. This question demands a separate consid-
eration. The property of the integral operator Eq. (13.85) may be noted. It 
is obvious, the Coulombic function of the kernel has the singularity when 

′=p p . The multiplier which includes the eigenvectors of the kinematic 
matrix, is represented by the sum in which the first adduct is reduced to 
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unity, the other terms vanish because of eigenvector orthogonality, pro-
vided the momenta are equal. If the momentum is changed like the ar-
gument of an eigenvector, like the latter is rotated in many-dimensional 
vector space relative to the other eigenvectors with some other argument, 
as are the scalar products with them of the eigenvector c

1
 mean cosines of 

the angles among those vectors, the values of these are close to zero. In 
particular this note, concerns the eigenvectors which belong to roots with 
nonphysical negative energies. 

Thus, the leading term in this kernel multiplier proves to be that with 
which the index coincides and with the index of the function outside of the 
integral operator. Besides, the Coulombic part of the integral operator ker-
nel is singular, when the momenta are equal, and it defines the asymptotic 
behavior of the solution. In this case, the first term of the scalar products of 
the kinetic matrix eigenvectors only affects the wave function asymptotic, 
which is unity at equal arguments in the potential function. The rest scalar 
products are equal to zero because of the eigenvector orthogonality in this 
domain. Therefore one has a reason to solve first the scalar relativistic 
equation

	 .	(13.86)

This equation can be solved by an iteration method choosing trial func-
tion from the decomposition of the potential function and components of 
the eigenvector c

1
(p). A factorization of the Coulombic kernel ( ),V ′p p  by 

variables gives an integral equation with a degenerated kernel for which 
solution can be obtained by an algebraic method. After calculation of the 
wave function in the momentum space, a transfer to the electronic coordi-
nate space is made by the formula (13.81).

The eigenvectors corresponding to nonphysical roots of the Dirac 
equation (which are assigned conventionally to positron states) contribute 
just as algebraic elements of the relativistic model considered similarly 
the connection of real and complex roots of a polynomial with real coef-
ficients. The prediction of the positron existence is truly connected not 
with the Dirac equation algebra, but with sign symmetry of the elementary 
electric charges, and this kinetic energy undoubtedly does not depend on 
an electric charge sign.
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The Eq. (13.86) changes to the nonrelativistic Schrödinger equation for 
an atom if particle momenta are much lower than mc, then the eigenvector 
c

1
 has zero “positronic” components like in Eq. (13.37).

(viii)A hypercomplex representation in the momentum space of par-
ticles

The above-developed theory of relativistic equations for a heavy atom 
can be expanded to a hypercomplex variant of equations. We start from the 
equation system for an n-electron atom

	 ( )H I ,E VΨ = - Ψ 	 (13.87)

where

	 1 2 2 2 2 2 2 2H H I I I H I I I H ,n= ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗ + + ⊗ ⊗ ⊗    	 (13.88)

with the kinematic matrices for separate particles

	
1

H
1

k
k

k

p

p

ag
ag

Γ

Γ

 
=  - 

,	 (13.89)

and the momentum written in the quaternionic form

	
x y zp ip jp kpΓ = + + ,	 (13.90)

with the Hamilton algebra 1ijk = - , 2 2 2 1i j k= = = - , and 1a = -  com-

muting together with the Hamilton units, 2 /e cg = 
.

The atomic potential function is of the form (in the relativistic atomic 
scale)

	 2 2

1 1

1n n

q q qq qq

Z
V

r r
g g

= ≠ ′= ′

= - +∑ ∑ ,	 (13.91)

Writing down the spectral resolution of the kinematic matrix (13.88)

	
2

1

H
n

k k k
k

λ∗

=

= ∑c c .	 (13.92)

in the momentum representation Eq. (13.87) then the integral equation is
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	 ( ) ( ) ( ) ( )
2

1

 ,
n

k k k
k

E d Vλ∗

=

Φ = Φ - Φ′ ′ ′∑ ∫c c p p p p p p ,	 (13.93)

where the potential function is expressed in the momentum space and de-
fined with the help of the Fourier transformation of the corresponding po-
tential function in the coordinate representation.

Multiplying this equation to the left successively by the eigenvectors 
of the kinematic matrix, one obtains equations with respect to projections 
of the multispinors onto those vectors. One gets

	 ( ) ( ) ( ) ( ) ( ) , Ik k k kE d Vλ ψ ψ= - ⋅ ⋅Φ′ ′ ′∫p p p p p c p p ,	 (13.94)

where ( ) ( ) ( )k kψ = Φp c p p . For the following transformation of the equa-
tion, introducing the unit matrix of the order 2n, and its spectral decompo-
sition

	 ( ) ( )
2

1

I  
n

k k
k

∗

=

= ′ ′∑c p c p

,	 (13.95)

substituting it into the integral Eq. (13.94), one arrives at the equation 

system sought for the functions ( )kψ p

	 ( ) ( ) ( ) ( ) ( ) ( )
2

1

 , ,   1, 2, ,
n

k k k k k k
k

E d V k nλ ψ ψ ψ∗
′ ′

′=

= - =′ ′ ′ ′∑∫p p p p p c p c p p


,	 (13.96)

By an analogy with the system given in the preceding section, we can 
make the analogous conclusions concerning applications of this relativis-
tic equation system in the theory of heavy elements.

The distinctive feature of the hypercomplex equation system, as com-
pared with that considered in the Clifford space is that, among the eigen-
vectors of kinematic matrix there exists only one, corresponding to the 
sum of the positive roots of the quadratic equation for the free particle en-
ergy. So, the equation with the index one is a determining one for solving 
the physical problem on motion of n particles (electrons) near a force cen-
ter. This equation can give the first approximation for the wave function 
of an atomic system. (It is possible a generalization of such an equation 
on molecular systems, also, but not in the context of this research.) This 
equation also gives the correct asymptotic solution of the initial equation 
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system, with a singular kernel of the integral operator. Writing down the 
abovementioned scalar relativistic equation

	 ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 ,E d Vλ ψ ψ ψ∗= - ′ ′ ′ ′∫p p p p p c p c p p

,	 (13.97)

where the scalar product of the multidimensional eigenvectors (spinors) 
of the kinematic matrix models is an influence of the spin kinematic of 
the particle system on their interactions by means of the Coulombic forces 
with the force center and between particles.

It stands to reason that advantages and deficiencies of these approaches 
given can be estimated in numerical realizations. We hope that the simple 
structure of the investigated equations will allow in the future to create 
mathematical software for posing and solving some actual problems in 
atomic spectroscopy and atomic physics of heavy and superheavy chemi-
cal elements.
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