
Computer Analysis of
Hypergeometric Series: a Project of

an Instruction Set Duplicating
Operations of the Factorization

Method

A.W.Niukkanen, O.S.Paramonova

Vernadsky Institute (GEOKHI),
RAS, Kossygin st. 19, 117975 Moscow, Russia;

e - mail: elkor@geokhi.msk.su; niukkanen@tula.net

The operator factorization method (see, e.g., [1]) greatly facilitating the study of mul-
tiple, including simple, hypergeometric series is the main object of our further interest.

The main goal of the paper is to outline a project of a universal ”formula sythesizer”
in the theory of hypergeometric series. The main idea of the project is to convert the basic
operations of the operator factorization method into a complete set of commands serving
us as a symbolic manipulation superstructure over a computer algebra system. Presently
we do not try to carry out a program implementation of this part of the project (other
parts are well underway; see Sec. 1.5 and 4). Our only intention is to present, explicitly,
a complete list of the main operations inherent in the factorization method.

The research has been supported by Russian Foundation for Basic Research, grant
01-01-00380.

1 Computer analysis and the factorization method

1.1. Computer algebra or computer analysis? Being related to mathematical physics
by origin and to a great number of problems in a variety of sciences, by application,
the hypergeometric series do have most direct relation to mathematical analysis, by the
methods used for their study. Computer – aided approach to the study of hypergeometric
series relates, obviously, to computer analysis rather than to computer algebra.

Analysis is the heart of mathematics and the concept of function is the heart of
analysis. Functions in pure mathematics are the immaterial entities which are deprived
of all properties except those endowed at will of mathematician. As to applied analysis
the hypergeometric series serve as a universal substitute for what we call a function. In
contrast to their ”pure analogs” they show a fantastic abundance of properties endowed
by their explicit structure. Therefore any algorithm efficient enough to tackle multiple
hypergeometric series of arbitrarily complicated structure can be looked upon as a versatile
solver capable to handle with almost any problem relating to functions of practical interest.

231



1.2.The central idea of the operator method is connected with an introduction of a new
simple differential operation of ”Ω-multiplication” w = u ∗ v over the functions u =
u(x1, . . . , xN) and v = v(x1, . . . , xN):

〈u ∗ v|x1, . . . , xN〉 = u (d/ds1, . . . , d/dsN) v(x1s1, . . . , xNsN) |∀sn=0 (1)

The fundamental importance of the Ω-multiplication is that it allows any series having
complicated structure to be directly expressed through simpler series thus permitting us to
use the properties of the simple series to analyze any property of the initial complicated se-
ries. Let NF [A; x1, . . . , xN ], NF [B; x1, . . . , xN ] and NF [A,B; x1, . . . , xN ] be the series
of the power functions xi1

1 . . . xiN
N /(i1! . . . iN !) with coefficients A(i1, . . . , iN), B(i1, . . . , iN)

and A(i1, . . . , iN)B(i1, . . . , iN), respectively. The in(n = 1, . . . , N) are summation in-
dices of the series (in = 0, 1, 2, . . .).

The general factorization formula for the series NF [A,B] reads

F N [A,B; x1, . . . , xN ] = 〈NF [A] ∗N F [B]|x1, . . . , xN〉 (2)

In short, F [A×B] = F [A]∗F [B]. This formula conveys the property of Ω - representablility
of multiplication operation over coeffifients of an arbitrary power series. It shows also that
the factorization method can be looked upon as a disguised form of algebraization of the
theory of hypergeometric series.
1.3. Conceptual basics of the method. First, any hypergeometric series is expressed only
through hypergeometric series (closure property). No necessity in employment of any
other auxiliary representation is arisen.

Second, the functional relation f ∗ f1 = f ∗ f2 will be called Ω-equivalent to the
relation f1(x1, . . . , xN)=f2(x1, . . . , xN). The concept of Ω-equivalence allows classes of
Ω-equivalent relations to be introduced. In each class a simplest relation which will be
called a proto-relation can be chosen. Having proved the proto-relation we thus prove all
formulas belonging to the class.

Third, using Ω-multiplication Ω-equivalent operators F1 ⇔ F2 can be introduced.
They defined by

F1 (d/ds, s) Ψ(xs)
∣∣
s=0

= F2 (d/ds, s) Ψ(xs)
∣∣
s=0

, (3)

where Ψ is an arbitrary function. Note that F1 and F2 are not necessarily identical to one
another. The possibility to substitute F1 for F2 in an Ω-product is an inportant technical
expedient of the method.

Fourth, by analogy with arithmetically identical expressions the algebraic expressions
connected by finite number of arithmetic operations and Ω-multiplication operations will
be called Ω-identical expressions. Transformation of an expression to an Ω-identical form
is another important technical expedient.
1.4. Three approaches to the use of factorization method. Altogether we can see three
approaches. The first one is to derive all formulas manually being dispensed completely
with the necessity of working with computer. Even in this case the factorization method
offers great advantages over traditional methods. The second approach implies the manual
derivation of basis sets of formulas with subsequent application of symbolic computer
programs for exaustive search of all different combinations of the basis formulas. The third
way consists in full–scale computerization of all operations inherent in the factorization

232



method which would open up the possibility for computer–aided derivation of any formula
relating to the theory of hypergeometric functions. One of the goals of the present paper
is to substantiate, theoretically, the feasibility of the third approach.
1.5. An experience in development of symbolic computer programs. All programs devel-
oped so far [2, 3] are based on the second (intermediate) approach. These programs utilize
not the factorization method per se, but the result of its application to a certain class of
formulas with the aim to derive manually, without using a computer, a set of basic rela-
tionships playing the role of building blocks for a chosen class of formulas. Applying such
a ”bounded–universal” procedure to one or another of several score classes of formulas
making up the backbone of the theory of hypergeometric series one can obtain, in prin-
ciple, sufficiently complete computerized version of the theory indirectly connected with
the factorization method. The initial steps in this direction covering the transformation
theory of hypergeometric series are made, with sufficient completeness, in the programs
announced in [2, 3].

The notable success of this approach was corroborated by the computer–aided deriva-
tion [4] of an important reduction formula given by Gelfand at al. [5] and its numerous
non-trivial generalizations.
1.6. An outline of the project. The accumulated experience suggests the desirability of
expanding the programs’ potentialities, in the spirit of the third approach (see Section 1.4).

The central part of the core (CPC) of the projected program complex is conceived to
perform, directly, all operations of the operator factorization method thus placing at the
user’s disposal a sort of a universal interactive ”formula synthesizer”.

The peripheral part of the core (PPC) is planned to consist of macro-commands im-
plementing the sets of basic relations obtained with the help of the CPC. Many of these
relations have been already obtained manually [4, 6]. Very large sets of relations can be
obtained with the help of the PPC in an automatic mode.

If the relations presenting little interest for derivation of new formulas are consided
to be valuable on their own they will be placed at date base surrounding (DBS). The
DBS will play the role of an information reference system. The DBS is expected to be of
moderate size for the main bulk of relations will be generated in PPC.
1.7. How the method would work in the program. The functionality of the method in
the program would not differ much from the work using hand and pencil. There are
two general schemes for carrying out calculations with the help of operator factorization
method.

The first scheme consists of four steps.
Step 1 (analysis) breaks up a series into an Ω-product of simpler series. Step 2 (simple
series transformations) utilizes the known properties of the simpler series for trans-
formation of factorized terms. Step 3 (auxiliary transformations) uses a finite set of
auxiliary identities converting the resultant expression into a form allowing application
of a (possible new) factirization formula. Step 4 (synthesis) transforms the operator
expression into an algebraic form with the help of a suitable factorization formula.

The second scheme is based on the concept of Ω-equivalence (see Section 1.3). Intro-
ducing a simple relation we can multiply its both sides by an Ω-factor thus obtaining a
new relation.

Despite the seemingly exotic nature of these approaches, they prove in practice to be

233



quite simple, universal and effective, and thus fairly suitable for the role of a superstructure
over one of the existing analytical manipulation systems.

2 Instruction set underlying the central part of the

core (CPC) of the proposed program complex

The instruction set duplicates the main operations of the factorization method. Each
definition of a formula giving us a project of a future entry of the instruction set is supplied
with capital boldface label. Sometimes mnemonic synonyms of the instructions names are
indicated in parentheses. The numbers attached to the labels of kindred formulas are to
be subsituted, in course of the program implementation, by exact specific indications of
the commands formats.

The references to the definitions will be denoted by lower case boldface labels. The
whole set of formulas given below constitutes a project of a specialized algorithmic lan-
guage. This language may give an origin to a program complex aimed at a full-scale
computerization of a substantial part of applied mathematical analysis. For convenience,
all formulas are subdivided into several classes.

Sometimes, if a formula written for the case of one variable can be extended directly
to the case of several variables we do not present the latter explicitly.

For notation see Refs. [1] and [13].
2.1. Factorization formulas
FACT1. Factorization of the series F [d; x]

F [d1 ; x1 d(s)] F [d2; x2s]|s=0 = F [d1,d2 ; x1 x2] , d(s) = d/ds (4)

FACT2. Factorization of the series in one variable containing compound parameter

F [d1 ; x1 d(s)] F [d2; x2s
m]|s=0 = F [< d1 | m >, d2 ; xm

1 x2] (5)

FACT3. General factorization of the series NF

NF [L1, L2 ; x1, . . . , xN ]

=N F
[
L1 ; d(s1), . . . , d(sN)] NF [L2 ; x1s1, . . . , xNsN

] ∣∣
∀sn=0

(6)

FACT4. Special factorization of the series NF

NF [< d | m1, . . . ,mN >, L ; x1, . . . , xN ]

= F [d ; d(s)] NF [L ; x1s
m1 , . . . , xNsmN ]

∣∣
s=0

(7)

FACT5. Factorization of NF containing the glueing operator F [d0 ; xdm(s)]

F [d0 ; xdm(s)] F [d1 ; x1s
m] · · ·F [dN ; xNsm]|s=0

= F

[
d0,

1

m
, . . . ,

m − 1

m
: d1 ; . . . ; dN ; xx1m

m, . . . , xxNmm

]
(8)

234



FACT6. Factorization of multiple series containing constant arguments

Ω =N+P F [〈d|m1, . . . ,mN+P 〉, . . . : x1
d

ds1

, . . . , xN
d

dsN

, u1, . . . , uP ]

×N+QF [〈d′|l1, . . . , lN+Q〉, . . . : y1s1, . . . , yNsN , v1, . . . , vQ] | ∀sn=0 (9)

=N+P+Q F [〈d|m1, . . . ,mN ,mN+1, . . . ,mN+P , 0, . . . , 0︸ ︷︷ ︸
Q

〉,

〈d′|l1, . . . , lN ,

P︷ ︸︸ ︷
0, . . . , 0, lN+1, . . . , lN+Q〉, . . . :

x1y1, . . . , xNyN , u1, . . . , uP , v1, . . . , vQ] (10)

2.2. General properties of the Ω-multiplication operation
OMEGA 1. Commutativity property u ∗ v = v ∗ u (COMM)

u(d(s))v(xs)|s=0 = v(d(s))u(xs)|s=0 (11)

OMEGA 2. Coupling rule (COUP)

u(d(s))v(xs)|s=0 = u(xd(s))v(s)|s=0 (12)

OMEGA 3. Associativity property (ASSOC)

< w ∗ (u ∗ v)|x >=< (w ∗ u) ∗ v|x > (13)

OMEGA 4. exp(x) plays the role of Ω-unit (OMUN) that is exp ∗f = f ∗ exp = f ,
or

exp(d(s))f(xs)|s=0 = f(d(s)) exp(xs)s=0 = f(x) (14)

OMEGA 5. The Ω-”unitarity” can be interpreted as ”renaming” (s for x) property
(REN)

exp xd(s)f(s)|s=0 = f(x) = f(x)|s⇒x (15)

2.3. Ω-equivalent operators
The case of EQUIV1. an arbitrary operator multiplied by power function

F (d(s))sn Ψ(s)|s=0 = F (n)(d(s)) Ψ(s)|s=0 (16)

The case of EQUIV2. an arbitrary operator multiplied by exponential function

F (d(s))exs Ψ(s)|s=0 = F (d(s) + x) Ψ(s)|s=0 (17)

The case of EQUIV3. the binomial operator multiplied by exponential function

F 1
0 [a; d(s)]exs Ψ(s)|s=0 = (1 − x)−aF 1

0 [a; d(s)/1 − x] Ψ(s)
∣∣
s=0

(18)

2.4. Relationships containing operators (without setting differentiation variable to zero)
OPER1. Shift operator identity (SHIFT)

exp(u d(x))f(x) = f(x + u) (19)

235



OPER2. Similarity transformation (F and f are arbitrary functions, A is an arbitrary
operator) (SIMIL)

f−1 F (A) f = F (f−1Af ) = F (A + f−1[A, f ] ) (20)

OPER3. Operator argument displacement formula (DISP)

exp(−vx)F [d(x)] exp(vx) = F [d(x) + v] (21)

OPER4. Applying of a differential operator to exp(x) (OPEXP)

F (d(x)) exp(ux) = F (u) exp(ux) (22)

OPER5. Generalized Leibnitz rule (LEIB)

F (d(x)) f1(x)f2(x) = F (d(x1) + d(x2))f1(x1)f2(x2)|x1=x2=x (23)

OPER6. Differentiation of simple hypergeometric series (DIFHYP)

dn(x) F [d; ux] = un(d, n) F [d + n; ux] (24)

2.5. Elementary reduction formulas
RED1. Reduction of the exponential series F 0

0 (REDEXP)

F 0
0 [∗//∗; x] = exp(x) (25)

RED2. Reduction of the binomial series F 1
0 (REDBIN)

F 1
0 [a//∗; x] ≡ F [a; x] = (1 − x)−a (26)

RED3. Reduction of an infinite geometrical progression (GEOINF)

1 + x + x2 + · · · ≡ F 1
0 [1; x] = (1 − x)−1 (27)

RED4. Reduction of the finite geometrical progression (GEOFIN)

1 + x + x2 + · · · + xN = (1 − xN+1)/(1 − x) (28)

RED5. Reduction of the series NF with empty glueing set

NF [∗//∗ : d1 ; . . . ; dN ; x1, . . . , xN ] = F [d1; x1] · · ·F [dN ; xN ] (29)

RED6. Reduction of the series NF with empty individual sets

NF [d : ∗ ; . . . ; ∗ ; x1, . . . , xN ] = F [d ; x1 + · · · + xN ] (30)

2.6. Auxiliary algebraic identities
ALG1 Gauss-Legendre multiplication formula for the Pochhammer symbol

(MULT(m))

(α,m i) = mm i
( α

m
, i
)(α + 1

m
, i

)
· · ·
(

α + m − 1

m
, i

)
(31)

236



ALG2. Inversion formula for Pochhammer symbol (INVER)

(a, −I) = (−1)I (1 − a, I)−1 (32)

ALG3. Cancellation or, vica versa, introduction of equal parameters in numerator and
denominator of a series (CANC, INTRO)

F [d; x] = F [a, d//a; x] (33)

ALG4. Vertical transfer of parameters (VERT)

NF [〈a|m1, . . . ,mN〉, L; x] =N F [L//〈1 − a|m̄1, . . . , m̄N〉; (−1)m x] , (34)

x = [x1, . . . , xN ], (−1)m x = [(−1)m1x1, . . . , (−1)mN xN ]
ALG5. Any series NF is symmetric with respect to simultaneous permutation of argu-
ments xi � xj, individual sets of parameters di � dj and all corresponding spectral
numbers mi � mi, li � lj, etc. (PERM)

ALG6. Uniformization of the argument of the binomial series F 1
0 [a; x + u] (UNIF)

F 1
0 [a; x + u] = (1 − x − u)−a = (1 − u)−a F 1

0 [a; x/(1 − u)] (35)

ALG7. Factorization of geometrical progression F 1
0 [1; x] into a product of two progres-

sions (PROG)

F 1
0 [1; x] =

(
N−1∑
r=0

xr

)
F 1

0 [1; xN ] (36)

ALG8. Decomposition of ex into a sum of N series F 0
N−1(x

N) (DEXP(N))

ex =
N−1∑
r=0

xr

r!
F

[
1 ; xN

〈1 + r|N〉
]

=
N−1∑
r=0

xr

r!
F

[ ∗ ; (x/N)N

1+r
N

, · · · , N−1
N

, N+1
N

, · · · , N+r
N

]
(37)

ALG9. Addition formula for binimial series (ADDBIN)

F 1
0 [a; x1 + x2] =

∞∑
n=0

(a, n)

n!
xn

1 F 1
0 [a + n; x1] x

n
2 F 1

0 [a + n; x2] (38)

3 Examples suggestive of functionality specifics of

the proposed CPC commands

3.1. An elementary example can be seen from comparison between relationships prog and
dexp(N) which prove to be Ω-equivalent one to another! The elementary formula prog
follows from the formulas geofin and geoinf. Thus it is just the prog plays the role of
proto-relation (see Sec. 1.3). Applying the operator F 0

1 [∗//1; z d(x)]|x=0 to the both parts
of prog we use the operations fact1, canc and redexp in the left-hand part and the
operations equiv1, difhyp, fact2, mult(m) and canc in the right-hand part. Then
the dexp(N) follows immediately. More general relations belonging to this class can be

237



obtained in analogous way if we apply F [d; zd(x)]|x=0, instead of the F 0
1 , to the both

parts of prog.
3.2. Already published examples. In fact, we are delivered from the necessity of giving
many examples of how the method could work in practice. Numerous examples of the
kind are given in the already published papers [1], [7]-[13]. Many simple examples illus-
trating application of operations (4) - (38) are given is Ref. [1]. The same operations were
emlpoyed for derivation of new recurrence relations [7]. Some new generating functions
for the Laguerre polynomials were presented in Ref. [8]. More general generating func-
tions, as well as a complete set of Meixner-type formulas and a new class of Lagrangean
polynomials were introduced in [9]. Very important special transformations of the Appel
F4 and the Horn H1 and G2 functions were obtained in [10]. A new approach to derivation
and generalization of involved Burchnall and Chaundy expansions playing a particularly
important role in the theory of double hypergeometric series was found in [11]. A sophis-
ticated analysis of many particular problems originated from contemplation of a classical
relation between Bessel functions was given in [12]. A heavy use of the operations (4) -
(38) was made in [13] for analysis of linearization relations and addition formulas including
a generaliztion of an important Koornwinder formula of the Jacobi polynomials. Special
attention has been given in Ref. [13] to the details of the new technology of analytical
transformations based on the operations (4) - (38).
3.3. An additional example. The references given in Sec. 3.2 relate mostly to the main
scheme involving the four steps mentioned in Sec. 1.7. The second scheme based on
the concept of Ω-equivalency was paid lesser attention in the above examples and needs
therefore a little bit more substantiation. To this end we introduce the notation

u1 = 1 − z + ξ1z, u2 = 1 − z + ξ2z
and consider the elementary relationship

L ≡ F 1
0 [c; (1 − ξ1)(1 − ξ2)z] = (1 − z)c(u1u2)

−c F 1
0 [c; ξ1ξ2z/u1u2] ≡ R. (39)

which is readily verified by using the reduction rule redbin. We then transform the proto-
relation (39) to an Ω-identical form facilitating transition to Ω-equivalent relations. Using
twice the operation fact1 we get the preliminary Ω-identical (see Sec. 1.3) transformation

F 1
0

[
c;

ξ1ξ2z

u1u2

]
=
∏2

n=1
F 1

0

[
c;

ξn(1 − z)

un

d

dsn

]
F 0

1

[∗;
c

s1s1z

(1 − z)2

]∣∣∣∣
s1=s2=0

(40)

To simplify dependence on ξ1, ξ2 we multiply eq. (40) by u−c
1 u−c

2 (see eq. (39)), transform
the both operator series F 1

0 with the help of redbin, allow for definitions of u1, u2, make
some elementary algebraic manipulations, use, inversely, the redbin and employ equiv2.
Thus we have

u−c
n F 1

0

[
c;

ξn(1 − z)

un

d

dsn

]
= (1 − z)−c F 1

0

[
c; ξn

(
d

dsn

+
z

z − 1

)]
⇔ (1 − z)−c F 1

0 [c; ξnd(sn)] exp[zsn(z − 1)−1]. (41)

Inserting (40) and (41) into (39) we finally have the desired Ω-identical representation of

238



R:

R = (1 − z)−c F 1
0 [c; ξ1d(s1)]F

1
0 [c; ξ2d(s2)]

× exp

(
zs1

z − 1

)
exp

(
zs2

z − 1

)
F 0

1

[∗
c

; s1s2z

(1 − z)2

]∣∣∣∣
s1=s2=0

. (42)

With the help of redbin the left-hand side L can be writhen as:

L =
∑∞

n=0

(c, n

n!
F 1

0 [−n, ξ1]F
1
0 [−n, ξ2] z

n . (43)

Then we apply the operator

F 0
1 [∗//c; x1d(ξ1)]F

0
1 [∗//c; x2d(ξ2)] |ξ1=ξ2=0

to the both sides of the identity L = R where L and R are given by eqs. (42) and (43)
respectevely. In case of the L the only operation fact1 is needed. In case of the R we
apply fact1, canc, redexp and ren, consecutively. The result∑∞

n=0

(c, n)

n!
F 1

1

[−n

c

; x1

]
F 1

1

[−n

c

; x2

]
zn

= (1 − z)−c exp

[
(x1 + x2)z

z − 1

]
F 0

1

[∗
c

; x1x2z

(1 − z)2

]
(44)

is equivalent to the Hille-Hardi bilinear generating function for Laguerre polynomials (see
[14], vol.1).

Applying to the both sides of eq. (44) the operator product

F 1
0 [a1; ξ1d(x1)]F

1
0 [a2; ξ2d(x2)]|x1=x2 ,

using twice fact1 on the left and equiv3 (see eq. (41)) and fact1 on the right we obtain
the apparently new bilinear generating functions for Gaussian polynomials F [−n, a//c; ξ]:∑∞

n=0

(c, n)

n!
F 2

1

[−n, a1

c

; ξ1

]
F 2

1

[−n, a2

c

; ξ2

]
zn

= (1 − z)a1+a2−c u−a1
1 u−a2

2 F [a1, a2//c; ξ1ξ2z/u1u2] . (45)

An attempt to apply eq.(45) to the Gegenbauer polynomials Cλ
n(x) may seem to make no

sense whatever because any of the known hypergeometric representations of Cλ
n(x) in the

form of F 2
1 contains two parameters dependent on n whereas each of the F 2

1 in eq. (45)
contains only one such parameter. Being sure that the list of representations for the
Cλ

n(x) given in literature is not complete we looked into a question of how many different
formulas for the Cλ

n(x) may exist. We used the linear (x → x−1, x → 1−x, x → x/(x−1))
and quadratic transformations (see [14], vol. 2 and the Sec. 4.2 below) conserving the
polynomial structure of the transformed functions. We found altogether 18 different
representations. The formula

Cλ
n(x) =

(2λ, n)

n!
[x + (x2 − 1)1/2]n F 2

1

[−n, λ ;

2λ

2(x2 − 1)1/2

x + (x2 − 1)1/2

]
(46)

239



which is incidentally absent in literature is of prime interest for applications.
This formula is remarkable for that the dependence on the order n of the polyn-

jmial F [−n, λ//2λ] in the definition (46) in the same as in the case of the polynomials
F [−n//α + 1] occuring in the definition of the Laguerre polynomials. The structural
similarity of the Cλ

n(x) and Lα
n shows that solution of the problems where dependence

on n plays an essential role would have, formally, much in common for the Cλ
n(x) and

Lα
n despite the fact that the Gegenbauer polynomials are a natural particular case of the

Jacobi polynomials which have nothing to do with the Laguerre polynomials. Beyond the
factorization method this formal observation would hardly be of any significance. On the
contrary, within the factorization method the simple observation gives us a powerful tool
for obtaining new interesting results. For example, letting a1 = a2 = λ, c = 2λ in eq. (45)
and using eq. (46) to express the resultant F 2

1 polynomials through Cλ
n(x) we can read-

ily obtain a seemingly new bilinear generating function for the Gegenbauer polynomials.
Derivation of bilateral, for the Lα

n and Cλ
n(x), generating function can be also performed

with ease.

4 Examples of macro-commands constituiting

the peripheral part of the core (PPC) of the pro-

posed program complex

As was already mentioned above (see Sec. 1.5 and 1.6) along with the universal set of
”low-level” derivation rules (4) - (38) we are going to use the generators of formula classes
consisting of a few specialized ”high-level” basic relationships. In distinction to the CPC
operations many of the PPC macro-commands have been already programmed [2, 3] and
applied for analysis of multiple hypergeometric series [4, 15].

We first give typical instances of macro-commands and then present some examples
of using these macro-commands (all necessary definitions and notation are given in the
refs. [1, 13]).
4.1. Linear transformations
LIN(K). Linear transformation connecting two series having the Kummer type (1//1)
with respect to x0 (the L∗ symbolizes the coefficients independent of summation index
i0):

F

[ 〈ν1|1,m1〉 , L∗ ; x0,x
〈ν0|1,m0〉

]
= ex0 F

[ 〈ν01|1,m01〉, 〈ν1|0,m1〉, L∗ ; −x0,x
〈ν0|1,m0〉 , 〈ν01|0,m01〉

]
(47)

LIN(G). Three linear transformations linking the series having the Gauss type (2//1)
with respect to x0. For each series we use a canonical representation [1, 13], where all
spectral numbers connected with x0 are equal to 1. The three transformations change,
consecutively, the first (G01), the second (G02) and the both (G00) numerator parameters.
The symbol following G in (GOQ) is the number of argument.

F

[ 〈ν1|1,m1〉 , 〈ν2|1,m2〉 , L∗ ; x0,x
〈ν0|1,m0〉

]
=

240



LIN(G01) = L0
1F ≡ (1 − x0)

−ν2 ×

×F

[
〈ν01|1,m01〉 , 〈ν2|1,m2〉 , 〈ν1|0,m1〉 , L∗ ;

x0

x0 − 1
,

x

(1 − x0)m2

〈ν0|1,m0〉 , 〈ν01|0,m01〉

]
(48)

LIN(G02) = L0
2F ≡ (1 − x0)

−ν1 ×

×F

[
〈ν1|1,m1〉 , 〈ν02|1,m02〉 , 〈ν2|0,m2〉 , L∗ ;

x0

x0 − 1
,

x

(1 − x0)m1

〈ν0|1,m0〉 , 〈ν02|0,m02〉

]
(49)

LIN(G00) = L0
0F ≡ (1 − x0)

ν012 ×

×F

[ 〈ν01|1,m01〉, 〈ν02|1,m02〉, 〈ν1|0,m1〉 , 〈ν2|0,m2〉 , L∗ ; x0,X
〈ν0|1,m0〉, 〈ν01|0,m01〉, 〈ν02|0,m02〉

]
, (50)

X = x(1 − x0)
−m012 .

4.2. Quadratic transformations
The ”classical” theory of quadratic transfornations even in case of simple series lacks
simplicity and transparency of structure to say nothing of multiple case. The relationships
which follow are applicable to any multiple series satisfying some necessary conditions.
Moreover instead of 9 functions we can confine ourselves, at the first step, but to 3
functions:

F1 ≡ F1[〈ν1|1,m1〉, 〈ν1 + 1/2|1,m1〉, L∗//〈ν0|1,m0〉; x0,x], (51)

F2 ≡ F2[〈ν1|1,m1〉, 〈ν2|1,m2〉, L∗//〈1 + ν12̄|1,m12̄〉; x0,x], (52)

F3 ≡ F3[〈ν1|1,m1〉, 〈ν2|1,m2〉, L∗//〈2ν2|1, 2m2〉; x0,x]. (53)

Just these functions occur in the following three basic quadratic transformations:
QUAD32. The transformation relating F3 to F2 is

F3 = [(2/(2 − x0)]
ν1F1

[ 〈ν1

2

∣∣1, m1

2
〉, 〈ν1+1

2

∣∣1, m1

2
〉, L∗; x13,x13

〈ν2 + 1/2|1,m2〉
]

(54)

x13 = x2
0(2 − x0)

−2, x13 = 4m12̄ x (2 − x0)
−m1 .

QUAD21. The transformation linking F2 and F1 has the form

F2 = (1 + x0)
−ν1F1

[ 〈ν1

2

∣∣1, m1

2
〉, 〈ν1+1

2

∣∣1, m1

2
〉, 〈ν2|0,m2〉, L∗; x12,x12

〈1 + ν1 − ν2|1,m1 − m2〉
]

(55)

x12 = 4x0(1 + x0)
−2, x12 = 2m1x(1 + x0)

−m1 .
QUAD32. The transformation expressing F3 through F2 is

F3 = [2/(1 +
√

1 − x0)]
2ν1F2

[ 〈ν1|1,m1〉, 〈ν12̄ + 1
2
|1,m12̄〉, L∗; x23,x23

〈ν2 + 1/2|1,m2〉〈ν12̄ + 1
2
|0,m12̄〉

]
(56)

x23 = (1 −√
1 − x0)

2(1 +
√

1 − x0)
−2, x23 = 4m12̄x(1 +

√
1 − x0)

−2m1 .
All other quadratic transformations follow from eqs. (54)-(56) by using the three oper-
ations lin(G) for F1, F2, F3 occuring in (54)-(56). This adds 6 new functions. Letting

241



N = 0 we thus obtain a complete systematic set of quadratic transformations of the Gauss
function F 2

1 .
4.3. Examples. Many interesting examples can be found in ref. [4] where the macro-
commands lin(G) were applied to Gelfand functions on grassmanians G2,4 and G3,6.
These functions depend on three and four variables, respectively. The linear transforma-
tions permitted us to use a new algorithm of finding reducible cases of these functions.
The idea of the algorithm lies in transforming the functions to the form allowing one out
of 6 elementary self-explanatory reduction rules to be used. The list of the elementary
reductions is given in ref. [4].

To conclude with, we give, without going into details, the results of computer analysis
of the special Appell function F4[a1, a2, a1, b2; x1 , x2]. We first used a representation of the
general F4 function through a complete series of the third order [10] and then, confining
ourselves to the special case, we obtained two different expressions of the general F4 in
the form of the following non-Hornian functions:

Kgb = F

[
α

β

:

:

a1, a
′
1

b1

;

;

a2

∗
; x1, x2

]
, (57)

Γbg = F

[〈α1|1, 1̄〉〈α2|1̄, 1〉 :

:

a1

∗
;

;

a2, a
′
2

b2

; x1, x2

]
. (58)

The processing of these functions consisted in using all possible linear commands lin(G)
along with an auxiliary bilinear transformation applicable to the functions containing an

� �
� �

� � � �
� � � �

� � � �
� � � �

� �
� �

�
��

�
���

��
�

��
�

��
�

��
�

��
�

��

�� ��

�� �� �� ��

�� �� �� ��

�� ��

� �
� �

� � � �
� � � �

� � � �
� � � �

� �
� �

�
��

�
���

��
�

��
�

��
�

��
�

��
�

��

�� ��

�� �� �� ��

�� �� �� ��

�� ��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�






�

�

�����

�����

�����

�����

�� ��

����
�� ��

����

�
�
�
�
�
�

�

�

�
�

�
�

�

�

�
�

�

�

�

��

�� ��

��

�

�

�

�

Kδ
bg

Gδ
ke

F γ
2

F β
2

Kβ
bg

Gβ
ke

Kγ
gb

Gγ
ek F γ

1
F γ

3
Kγ

bg

Gγ
ke

F δ
2

Fα
2

Kα
bg

Gα
ke

H̃β
2

H̃δ
2

Γδ
bg

F δ
3

F δ
1

Kδ
gb

Gδ
ek

H̃γ
2Γα

bg

Γβ
bg

H̃α
2

Γγ
bg

Kα
gb

Gβ
ek F β

1

Fα
1

Kβ
gb

Gα
ek

Fα
3

F β
3

”indefinite” parameter 〈0|1, 1̄〉. The
process performed in automatic mode
gave us the following 5 functions:

Gek = F

[
α1, α2

β

:

:

∗
∗

;

;

a2

b2

; x1, x2

]
(59)

F1 = F

[
α

β

:

:

a1

∗
;

;

a2

∗
; x1, x2

]
(60)

F2 = F

[
α

∗
:

:

a1

b1

;

;

a2

b2

; x1, x2

]
(61)

F3 = F

[ ∗
β

:

:

a1, a
′
1

∗
;

;

a2, a
′
2

∗
; x1, x2

]
(62)

H̃2 = F

[〈α|1̄, 1〉 :

:

a1, a
′
1

∗
;

;

a2

b2

; x1, x2

]
(63)

The result of all transformation is represented at the diagram. Black nodes at the
ends of short segments denote arguments of the double series. Long lines symbolize linear
transformations. For more details see Ref.[15].

242



5 Concluding remarks

The program implementation of the ”central part of the core” (see Sec. 2) would allow
us, instead of using a ”manual”, with pen and paper, calculation technique, to perform
all analytical transformations with the help of computer in an interactive mode, in this
way relieving the researcher of the tedious copying of cumbersome formulas and placing
at his disposal a universal ”formula synthesizer” of a sort.

An addition of new macro-commands to the ”peripheral part of the core” (see Sec. 4)
would give us an access to hundreds and thousands of new relationships, whose publication
in the traditional form of books and periodicals would hardly have been practicable.

An inappropriately cumbersome user interface may well happen to become a sub-
stantial practical obstacle to the effective program realization of the global approach. A
detailed look at the work with the formulas’ ”screen images” and sophisticated investi-
gation of different variants of its organization seems to be obligatory condition for the
effective man–machine formula interface. We hope that recourse to ”semantics-oriented”
tools, like XML, OpenMath, etc., may help us to solve the problem.

References

[1] A.W.Niukkanen A new theory of multiple hypergeometric series and its prospects
for computer algebra programming (in Russian), Fundamentalnaya i prikladnaya
matematika, 1999, 5, 1–29.

[2] O.S.Paramonova, A.W.Niukkanen, Analytical transformations of hypergeometric se-
ries (in Russian), Programmirovanie, 1998, No 6, 25–26.

[3] O.S.Paramonova, A.W.Niukkanen, New algorithms of finding reduction formulas of
multiple hypergeometric series (in Russian), Programmirovanie, 2000, No 1, 62–63.

[4] A.W.Niukkanen, O.S.Paramonova, Computer generation of complicated transforma-
tions for multiple hypergeometric series, Comput. Phys. Commun., 2000, 126, 141–
148.

[5] I.M. Gel’fand, M.I. Graev, V.S. Retakh, General hypergeometric equations systems
and hypergeometric type series (in Russian), Uspekhi Matem. Nauk , 1992, 47, 3–82.

[6] A. W. Niukkanen, Transformation theory of multiple hypergeometric series and com-
puter aided symbolic calculations, Proceedings of the 9th Conference on Computa-
tional modelling and computing in physics , Dubna, 1997, 219–223.

[7] A.W.Niukkanen, Factorization method and recurrence relations (in Russian), Integral
transforms and special functions. Computer center, 1997, 1, No 2, 10-15.

[8] A. W. Niukkanen, A new method in the theory of the hypergeometric series (in
Russian), Uspekhi Matematicheskikh Nauk , 1988, 43, 191–193.

[9] A. W. Niukkanen, A new approach to the theory of the hypergeometric series (in
Russian), Russian Matematicheskie zametki, 1991, 50, 65–73.

243



[10] A.W.Niukkanen, Factorization method and special transformations of the functions
F4, H1 and G2 (in Russian), Uspekhi Matem. Nauk , 1999, 54, 169–170.

[11] A.W.Niukkanen, New algoritms for the hypergeometric series and the Burchnall and
Chaundy expansions (in Russian), Programmirovanie, 2000, No 2, 67–69.

[12] A.W.Niukkanen, I.V.Perevozchikov, V.A.Lurie, A generalization of a classical rela-
tion between Jν+n(z), Jν(z) and Jν−1(z), Fractional calculus and applied analysis,
2000, 3, No 2, 119-132.

[13] A.W.Niukkanen, Operator factorization method and addition formulas for hyperge-
ometric functions, Integral transforms and special functions, 2001, 11, 25-48.

[14] A. Erdélyi, W. Magnus, F. Oberhettinger, F. Tricomi, Higer transcendental func-
tions , (McGraw-Hill, N.-Y., 1953).

[15] O.S.Paramonova, A.W.Niukkanen, Computer analysis of transformation formulas of
the Appell and the Horn functions, submitted to Programmirovanie.

244


