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Abstract 

We discuss semiempirical approaches and parametric methods developed for modeling 

molecular vibronic spectra. These methods, together with databases of molecular fragments, have 

proved efficient and flexible for solving various problems ranging from detailed interpretation of 

conventional vibronic spectra and calculation of radiative transition probabilities to direct 

simulations of dynamical (time-resolved) spectra and spectrochemical analysis of individual 

substances and mixtures. A number of specific examples and applications presented here show the 

potential of the semiempirical approach for predictive calculations of spectra and solution of inverse 

spectral problems. It is noteworthy that these advances provide computational insights into 

developing theories of photoinduced isomer transformations and nonradiative transitions in 

polyatomic molecules and molecular ensembles, theory of new methods for standardless quantitative 

spectral analysis.  

 

Introduction 

Polyatomic molecules, supramolecules and molecular associates can exchange information 

and transfer energy through collisions and chemical reactions, and also through elementary acts such 

as absorption, emission or scattering of electromagnetic waves. Beyond trivial absorption and 

consecutive spontaneous emission, these rather complicated processes may result in and be used for 

irreversible photochemical transformations of molecular structure; creating an inverted population, 

data storage; and pattern recognition [1-4] at the molecular level. These peculiarities of objects from 

the world of molecules make this world very attractive for studies and design of new materials or 

drugs, molecular devices [5-9], fundamentally new electronic components for computers and 

communication systems. 
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However, it is quite clear that purely empirical work along these lines, even if supported by 

brute-force ab initio calculations, will be difficult or even impossible. This is due to the sheer size 

and high dimensionality of realistic systems. It therefore seems reasonable that further progress will 

rely heavily on investigative computer simulations and experiments. A number of easily adjustable 

molecular models and computational methods come from the theory of vibrational and vibronic 

spectra whose “speciality” is basically finding energy levels and transition probabilities for complex 

molecular systems subjected to various perturbations and external fields. For this reason, advances in 

theoretical molecular spectroscopy and its methods, which may seem far from being able to describe 

processes any more complicated than basic absorption or emission of radiation, ultimately determine 

and spur the development of other closely related chapters, such as quantum chemistry of large 

(bio)molecules. Further, and this is more important, prognostic capabilities of the theory of spectra 

can be most easily tested experimentally – in this sense simulations of spectra give one the shortest 

bridge from molecular models to observed quantities; for this reason theoretical spectroscopy has 

been long used in studies of structure and reactivity of polyatomic molecules in their ground and 

excited states.  

As is believed natural for any theoretical generalization claiming to provide a description of 

complex systems, practical applications immediately manifest the principle of complementarity 

introduced by Niels Bohr. Theory of spectra originates from rigorous quantum mechanical concepts 

and approaches, but from the other hand — it relies on an appropriate choice and parameterization of 

a particular molecular model that inevitably implies semi-empirical treatment of a problem at hand. 

This occurs primarily in pursuing clarity when one wishes to develop a language for describing 

complex objects. But still the other side of the coin is that a purely “mathematical solution” might 

give results that would be hard to interpret and compare with an experiment. A good illustration 

comes from quantum chemistry where one just cannot find rigorous proofs for some fundamental 

concepts ranging from convergence of the self-consistent field procedure, the idea of LCAO all the 

way down to the choice of Gaussian basis sets. 

A comprehensive approach to the problems in the theory of spectra with special emphasis 

paid to practical aspects has been pursued in a series of monographs by one of the authors and his 

colleagues [10-17]. This article is intended as a sequel and further development of the circle of ideas 

introduced there.  

Here we will use the Born-Oppenheimer adiabatic approximation; hence the vibrational 

structure of a spectrum can be understood, e.g., quantitatively in terms of differences between 

ground state and excited state potential energy surfaces (PES). Significant progress in this field gave 

rise to new quite accurate and efficient methods for computing all the matrix elements [16, 18-20]. 
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Thus, the central problem of adiabatic theory of spectra reduces now to the problem of how to obtain 

changes in geometry and force constants occurring upon electronic excitation. It is worth noting here 

that for polyatomic molecules these differences in PES are typically small (of the order of several 

percent), so appropriate methods should be employed to achieve spectroscopic accuracy. 

 Existing approaches make it possible to perform direct calculations of spectra for adiabatic 

molecular models, achieving good quantitative agreement with experiment (see, for example, [14, 

15, 21-24]). This is not only a window into interpretation of spectral experiment, but it also leads to 

refinement of models through solution of inverse problems [25]. 

However, the level of adiabatic theory that has been achieved so far, and questions that have 

arisen, suggest that further development is necessary, perhaps, mainly with the aim to improve the 

system of parameters and extend computational methods in accord with experiments. Here we refer 

primarily to high resolution laser spectroscopy in supersonic jets, experimental techniques based on 

dispersed single vibronic level fluorescence spectra [26-38] and, especially, the exponentially 

growing field of time-resolved spectroscopy with closely related modern femto-sciences — 

femtochemistry and femtobiology [39-46]. All this provides strong motivation for the development 

of corresponding theoretical methods and predictive molecular models. 
 

1. The system of parameters for adiabatic molecular model in the theory of vibronic 

spectra 

As the experimental techniques have developed and new methods came into play, the role of 

detailed, accurate and, more importantly, predictive calculations of vibronic spectra have become 

principle in the studies of structural and spectroscopic properties of polyatomic molecules. Due to 

quite general reasons, but not just because of lack of computational resources, much progress in this 

field is to be expected from parametric semiempirical methods supplied with databases of molecular 

fragments and physically meaningful systems of parameters. The possibility of such theory for 

adiabatic molecular models was first discussed in [47] and found further development in [48-50]. 

The basic idea is to describe PES of the molecule in terms of two groups of parameters — first and 

second derivatives of Coulomb and resonance one-electron integrals in the basis of hybridized 

atomic orbitals (HAO) with respect to natural coordinates (the first derivatives are responsible for 

changes in geometry of a molecule, while the second — for changes in force constants). The 

important point also is that these parameters are the same for different electronic states.  

In the framework of the parametric approach, most of analytical expressions for changes in 

PES upon electronic excitation can be significantly simplified by retaining only the leading diagonal 

terms. This along with characteristic structure of changes in electron density matrix, pronounced 
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local properties of the derivatives and ranking by their absolute values, makes the number of these 

parameters just small, whereas transferability of parameters in homologous series and optimal 

semiempirical choice of their specific values for certain molecular fragments have provided a 

reasonable basis for direct calculations of one-photon absorption and fluorescence vibronic spectra 

and properties of excited states. The use of molecular fragments is essential, providing that 

calibration of model parameters can be done for small molecules and one type of experiment 

(conventional absorption or fluorescence). Models of complex compounds can then be built from 

these fragments (pre-stored in databases [48-53]) and used for simulations of spectra either of the 

same or of the other type. Such approach has been applied to extend existing parametric methods to 

the case of time-resolved vibronic spectra, which — having one extra dimension— contain more 

spectroscopic information. We shall address this issue and summarize our results on direct 

simulations of dynamical spectra in section 3. 

In adiabatic approximation, models of combining electronic states can be described by the 

parameters of PES, namely by the location of its minimum (equilibrium geometry, s) and curvature 

(force constants, u). This system of parameters have proved suitable in the theory of vibrations and 

vibrational spectra of polyatomic molecules, since it gives clear physical picture and holds some 

transferability in series of molecules and structural groups.  In turn, vibrational structure of 

electronic spectra is related to changes in PES upon excitation ( us ∆∆ , ) which for large molecules 

are typically small (of the order of 5%) unless transitions between isomers are considered. 

Correspondingly, required transferability of these quantities must be at least 2 orders of magnitude 

higher than that of parameters of the ground state (s(0), u(0)).  However, calculations show [54] that 

even for polyenes, that have rather similar geometrical and electronic structures, straightforward 

transfer of s∆  and u∆  from one molecule to another results in serious errors. Besides, these values 

differ from one electronic states to another. It obviously raises severe difficulties on the way toward 

developing databases of molecular fragments for spectral calculations. Therefore, a theory of 

vibronic spectra should be based on an alternative system of “hidden” parameters of adiabatic 

molecular model that necessarily meet the following criteria: 

(i) clear physical meaning and correlation with PES parameters; 

(ii) locality that could allow to separate out characteristic structural groups (fragments); 

(iii) transferability between similar species containing typical fragments; 

(iv) suitability for ranking and choosing relatively small set of most relevant parameters; 

(v) independence from small changes of electron density distribution in fragment upon 

excitation that allow to construct unified system of parameters for different excited 

states; 
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In developing the parametric semiempirical approach we will proceed from the methods proposed 

for calculation of parameters of excited state PES [55] and parameterization of molecular models 

[47, 56, 57]. 

In harmonic approximation, PES of the n-th electronic state expressed in terms of 

independent normal coordinates Q(0) of the ground state represents as: 
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where the matrix of squares of vibrational frequencies Λ , as well as Q(0), for the ground state can be 

found by the standard methods in the theory of vibrations and IR spectra of polyatomic molecules 

[13] According to the Hellmann-Feynman theorem, generalized forces a(n) (taken with opposite 

sign) associated with normal coordinates Q(0) have the form:  
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where P(n) is the density matrix in the n-th electronic state. In CNDO approximation He = H + S VNN, 

with H being the matrix of Coulomb and resonance one-electron integrals, S – overlap matrix in AO 

basis, ( )∑= βα βαβα, ,/ rZZVNN  – potential energy of repulsion between nuclei. The matrix of second 
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Using (1.1) and relation between normal and natural coordinates of the ground state )0()0()0( QLq q= , 

one can find changes in geometry (bond lengths, valence angles, etc.) upon excitation [55]: 

( ) )(1)()0()0()()( nn
q

nn aALsss −
−=−=∆ .       (1.6) 

Here it is assumed that the same but shifted system of natural coordinates can be used for excited 

states, which is reasonable for small transformations of molecular structure. 

Since 0)0( =a  for the ground state, (1.6) takes the form: 
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and )0()()( PPP nn −=∆  is the matrix of changes in electron density upon excitation. 

 If we transform now (1.1) to natural coordinates )()0()( nn sqq ∆−=  and note that linear term 

should vanish, then for the force constants of excited state model )(n
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Assuming that deformations of molecular model associated with electronic excitation are small 

(compared to equilibrium configuration) and retaining only the first order terms in (1.7), we then 

replace A(n)  by A(0) getting rid of the term proportional to )()( nn aA ∆∆ . This means that for calculation 

of changes in geometry the matrices of force constants and squared frequencies are taken equal to 

those of the ground state (in doing so, the errors in )(ns∆  do not exceed ~10%). Expressions (1.2) 

and (1.8) give: 
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Similarly, neglecting the derivatives of density matrix we write: 
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These approximations are also supported by the fact that the relation between changes in 

density matrix, geometry and force field parameters have linear form, which is well consistent with 

correlations between bond lengths, force constants and bond orders (see, for example, [14, 16, 21]).  
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Fig.1.1. HAOs and internal coordinates of molecular fragment. 

 

 

Thereby, the derivatives lkeke qqHqH ∂∂∂∂∂ 2,  taken at equilibrium configuration define 

the parameters of adiabatic molecular model and serve as “hidden” parameters of the theory. 

Analysis of their properties at the qualitative level [58] had shown that this parameterization 

provides good starting point for the semiempirical theory of vibronic spectra based on the use of 

molecular fragments.  Here we discuss the most important features of the proposed method and 

models.  

The locality of parameters is determined by the local properties of Coulomb and resonance 

integrals that come from many quantum calculations. Since matrix elements serrs HH χχ≡  

(where rχ  represents HAO basis) decrease rapidly as the distance from atoms rα  and sα , on which 

HAO rχ  and sχ  are centered, increases, these parameters can be attributed to local groups of atoms. 

Moreover, differentiation with respect to natural coordinates enhances this effect, so that only 

interactions between HAO and atoms, which form corresponding natural coordinate, will contribute 

to the value of parameter. In fact, this important property allows to assign parameter to a certain 

small (3–4 atoms) molecular fragment. The set of quantities qH ∂∂  can then be divided into groups 

depending on the type of HAO (σ  or π ) and natural coordinate (bond length, valence angle, etc.). 

For example, c
i

t
rs qH ∂∂ , where t refers to the type of HAO, c denotes the type of natural coordinate, 

r and s are the indices of HAO, i is the number of natural coordinate (see Fig.1.1).  

Besides, these properties make it possible to rank quantities jirsirs qqHqH ∂∂∂∂∂ 2, and 

take into account only major parameters. For example, estimates give: 
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Note also that more accurate ranking by ab initio calculations does not usually make much sense, 

cause optimal values can be obtained only through semiempirical calibration with real experimental 

spectroscopic data.  

 It is possible, therefore, to work out parametric models of different levels of accuracy 

considering only the terms up to a certain order that significantly reduces the number of parameters 

responsible for vibronic band shape and brings it to a small number. This not only simplifies 

calculations of (1.12) and (1.13), but also makes the model intuitive and assures that determination 

of parameters from experimental data represents a well-posed problem. 

 Yet another important property of the proposed system of parameters is that it is unified for 

different electronic states. All the parameters are defined by the molecular structure and can be 

obtained from purely geometric considerations, whereas the changes occurring due to electronic 

excitation are accounted by the increment in electron density matrix )(nP∆  which can be calculated 

by one of quantum chemical methods. 

 Further, transferability of jirsirs qqHqH ∂∂∂∂∂ 2,  in homologous series follows from the 

same property of Coulomb and resonance integrals. The derivatives are not small, so that the 

requirements on their transferability are generally weaker than that for force field and geometrical 

parameters of PES.  These requirements are basically of the same order as for force constants in the 

theory of IR spectra, and, hence, transferability of the parameters is expected to be even better (it is 

found sufficient for quantitative predictions of vibronic spectra), cause these quantities, unlike force 

constants, do not depend upon the effect of far interactions, e.g., in conjugated systems.   

 It is clear enough that matrix He should be computed in HAO, but not in AO, basis, since in 

this case structural features of molecular fragments appear explicitly. It also makes the system of 

parameters invariant and improves its transferability by eliminating the dependence on the choice of 

laboratory coordinate system.  

 The parameters have clear physical meaning and can be computed by ab initio or 

semiempirical methods. For example, b
irs qH ∂∂ π  describes the change in energy of π -electron 

distributed along the bond b
iq  according to ( )srχχ  upon variation of this bond, while b

irr qH ∂∂ σ  is 

related to energy of interaction of the electron distribution ( )2
rχ  with the atom sα  being a part of the 
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bond b
iq . In contrast to empirical scaling factors used in some quantum chemical methods [59], the 

values of these parameters can be preliminary estimated by direct quantum calculations. However, 

there is no reason for semiempirical parameters to coincide with those calculated ab initio, mainly 

because of approximations involved from both sides.  

 Calculations done for specific molecular models (butadiene, hexatriene, octatetraene), all 

having characteristic periodic fragment => C
H

, have confirmed qualitative a priori estimates [48]. 

The parameters demonstrate pronounced local properties; those directly associated with => C
H

 

group clearly dominate over all the rest which are smaller by an order of magnitude or more (for 

hexatriene ( ) ( ) ( )b
nrs

b
mrs

b
jrs

b
irs qHqHqHqH ∂∂=∂∂=∂∂=∂∂ ππππ 2073 ) preserving their values within 

molecule and across homologous series with maximal deviation of 50%. We can then reduce the 

number of parameters by retaining leading quantities and neglecting small ones, as in the following 

sequence (given in parentheses are averaged values): b
jrr qH ∂∂ σ (2 a.u.), b

jirr qH ,∂∂ π (0.8 a.u.), 

b
irr qH ∂∂ σ (0.5 a.u.), b

irs qH ∂∂ π (0.3 a.u.), a
irr qH ∂∂ π (0.3 a.u.), a

iirr qH ′′′∂∂ ,
π (-0.15 a.u.). This allows to 

introduce => C
H

 fragment along with its intrinsic small system of parameters as a transferable 

building block for models of more complex molecules containing polyene fragments.  

It is essential that us ∆∆ ,  (1.12), (1.13) depend not only on values of these parameters, but 

also on changes in density matrix )(nP∆ . Its typical structure for *ππ  transitions in conjugated 

polyatomic molecules (as in polyenes, for example) suggests that principle contributions (three 

orders of magnitude higher than others) to us ∆∆ ,  are specifically attributed to b
irs qH ∂∂  (related 

to molecular geometry) and 22 b
irs qH ∂∂  (responsible for changes in force field upon electronic 

excitation).  So, to a first approximation, these two quantities define the model of excited electronic 

states of π -electron molecular systems, which correlates well with direct calculations of vibronic 

spectra of polyenes, acenes, diphenylpolyenes and related species with *ππ  transitions [21-24]. The 

results of these simulations, which take into account only changes in bond lengths and force 

constants, are in good agreement with experiment. However, it is expected that quantitative 

description of *πn  transitions accompanied by substantial deformation of σ -electron density will 

require full consideration of changes in valence angles and corresponding parameters. 

For a parametric method and computational algorithms to be applicable in practice it is 

required to satisfy some stability criteria with respect to variations of parameters. It can be shown 
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that stability (in the sense that small variations of model do not lead to large changes in spectral 

curve) is guaranteed by the stability with respect to “natural” PES parameters us ∆∆ ,  and linearity 

of relations (1.12), (1.13). 

Thus, here we see that, due to the reasons discussed, straightforward conventional adiabatic 

molecular models built in terms of bond lengths, valence angles, force constants proved 

inappropriate for calculations of vibronic spectra. In turn, the new system of “hidden” parameters 

has been designed to meet the requirements that appear in practical modeling and direct simulations. 

This system itself holds much promise as a basis for parametric semiempirical adiabatic theory of 

vibronic spectra and efficient methods for computing vibronic transition probabilities. Certainly, the 

approach should be tested through extensive comparative studies over a number of molecules and 

homologous series. The next section outlines our results in this direction. We examine properties and 

efficiency of the proposed parametric method and its predictive ability making comparisons of 

calculated vibronic spectra with experimental data. 

 

2. Calculations of stationary vibronic spectra with the parametric method 

Of the homologous series that demonstrate well resolved vibrational structure of electronic 

spectra, extensively studied, therefore, both theoretically and experimentally, are polyenes, their 

substituted derivatives (in particular, diphenylpolyenes), acenes and azines. The results collected 

here show the parametric method as it was employed for calculations of vibronic spectra, 

specifically for polyenes and acenes.    

 

2a. Polyenes 

Molecular models of polyenes in their ground states were constructed from fragments of 

smaller homologous with force field parameters transferred “as is”. It was confirmed by the 

simulations that, in an analogy with polymers, as the length of polyene chain increases, contributions 

from terminal groups gradually become negligible, whereas parameters of the inner => C
H

 

fragments approach a limit, which can be considered constant for all groups within a molecule and 

for longer homologues. For this reason, values of bond lengths and force constants for links between 

fragments were set to those of inner groups in sufficiently long molecules. Experimental data, other 

theoretical studies including quantum calculations of electron density and estimates for parameters 

obtained through correlations “index—length—force constant of the bond” [21] have justified this 

procedure. Calculations of vibrational frequencies of the ground state have shown that this simple 
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approximation provides good agreement with experiment, so that there is no need for solving inverse 

problems. This supports, again, the fact that the idea of molecular fragments together with 

understanding the peculiar properties of various homologous series give efficient models of the 

ground states with accurately computed IR frequencies. 

By virtue of approximations, any parametric method is a semiempirical one that implies 

“adjustment” of the system of parameters to match direct or indirect experimental data. Such 

corrections have been introduced to rough values of  => C
H

 parameters obtained by CNDO/S 

method in order to account for real errors associated with approximations, inaccuracies of quantum 

calculations and adiabatic model itself. In the first approximation of the theory (with a minimal set 

of parameters), this gives b
irs qH ∂∂ π =0.055 a.u., 22 b

irs qH ∂∂ π =0.1 a.u. Making the use of a single 

parameter, which was set equal for all groups and all homologous (NCC=3–13, [48, 52, 53]), allows, 

however, to achieve satisfactory quantitative description of changes in electronic states upon 

excitation. For bond lengths the deviations are ~15%, in average, with a maximum of ~35% for C–C 

bond in hexatriene (variations of the same order was observed in the solutions of inverse problems 

[25]). The same holds for force constants. It is important that the parametric approach treats changes 

of different natural coordinates, including angles, in a unified way. These changes for valence angles 

come out much smaller than those for bond lengths (about 20%, in relative units), which is 

consistent with typical results of inverse problem solution (15% [25]). Moreover, for the majority 

(~70%) of angular coordinates, the method in most cases reproduces these results quantitatively.  

Primary criteria for correctness of parametric approach, chosen system of parameters and 

specific values of parameters, adequacy of excited state model, should necessarily be based on 

agreement of calculated spectra with experiment. This is because there are no direct experimental 

methods that would measure PES parameters and the only indirect way to get this information is 

spectroscopic interpretation. The other part of the reason is that computational uncertainties of 

quantum chemical methods turn out to be of the order of changes in these quantities upon electronic 

excitation and so there is just no point to compare such results obtained, for example, by different 

methods.  



 12

 
Fig.2.1. Absorption spectra of butadiene calculated in the first (1) and second (2) approximations and 

experimental absorption spectrum (3) [60]. 

 

 
Fig.2.2. Absorption spectra of hexatriene calculated in the first (1) and second (2)  approximations; using the 

PPP–CI model (3); and experimental absorption spectrum (4) [61]. 
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Fig.2.3. Experimental (1) [62] and calculated in the first approximation (2) absorption spectra of 

hexadecaheptaene. 

 

 
Fig.2.4. Experimental (1) [62] and calculated in the first approximation (2) absorption and fluorescence 

spectra of tetradecaheptaene. 
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Fig.2.5. Absorption spectra of octatetraene calculated in the first (1) and second (2) approximations [52] and 

experimental absorption spectrum (3) [63]. 

 

 

 
 

Fig.2.6. Absorption spectra of decatetraene calculated in the first (1) and second (2) approximations and 

experimental absorption spectrum (3)  [64]. 
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Calculated absorption spectra of polyenes (butadiene, hexatriene, hexadecaheptaene, 

tetradecaheptaene, octateraene, and decatetraene) shown in Fig.2.1-2.6 demonstrate remarkable 

quantitative agreement in band positions and intensities with experimental spectra. Note that the first 

approximation model was calibrated for butadiene and hexatriene and then used unchanged. 

Therefore, calculations of spectra of longer polyenes in this approximation are purely predictive.  

There are some peculiarities, though, to explain which we should go beyond the first 

approximation. For low-frequency bands calculations give intensities systematically lower than 

observed. For example, for octatetraene experimental relative intensity at ~200 cm-1 is about 0.11, 

whereas computed value is as low as 0.02; for hexatriene at ~300 cm-1 these are 0.18 and 0.03, 

respectively. On the contrary, С-С bond stretching vibronic modes (~1200 cm-1) in calculated 

spectra of octatetraene and butadiene are perceptibly stronger than in experimental (0.41 and 0.23 for 

octatertaene). This leads to significant errors in intensities of overtones and combination bands (for 

example, the first overtone of 1235 cm-1 vibration in octatetraene spectrum is about fourfold more 

intense than its experimental value). It was found reasonable to assume that these discrepancies are 

attributed to inaccurate geometries of excited state models, namely to changes in angular 

coordinates, since their contributions even to valence modes may be noticeable, ~10%. Similar result 

follows also from the analysis performed in [48], where it was shown that consecutive refinement of 

first approximation model (by first taking into account changes in bond lengths only and, then, in 

angles) improves agreement between theoretical and experimental spectra. 

Of the short polyenes (butadiene, hexartiene, octatetraene), spectrum with best resolved 

vibrational structure was obtained experimentally for octatetraene [63]. Besides, it can be expected 

that with increasing length of polyene chain, the number of relevant angular parameters will grow 

and that overall spectral effect for octatetraene will be stronger, than it is for shorter homologues. 

For these reasons, we calibrated parameters of the second approximation using octatetraene model as 

a testing bed, with general strategy being to apply unchanged set of parameters to other polyenes. 

This allowed us to test the quality of parameterization, transferability of parameters and predictive 

ability of the method itself. 

The best results in the second approximation was obtained with the following: 

a.u.045.0bπ =∂∂ irs qH ; a.u.005.0aπ −=∂∂ ССС
irr qH ; a.u.0015.0aπ −=∂∂ CCH

irr qH ; 

a.u.1.02bπ2 =∂∂ irs qH . As this sequence indicates, the first approximation parameter свπ
irs qH ∂∂  

undergoes only small change (<20%), while the angular parameters are by an order of magnitude 

smaller, that justifies our preliminary estimates, ranking and possibility of parametric theories of 

different levels of accuracy [48]. 
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Calculated spectral curve, frequencies, intensities and line assignment in vibronic absorption 

spectrum are given on Fig.2.5 (curve 2). Theoretical spectrum is in good agreement with intensities 

of all major peaks observed in the experiment. In the second approximation, the intensities of 1
010  

and 1
07  bands come out smaller approaching experimental values. Further, equal attention should be 

paid to weak lines; as compared to the first approximation, the sum of relative discrepancies between 

experimental and calculated intensities reduces from 0.7 down to 0.4, their mean value decreases 

from 0.05 to 0.03, standard deviation — from 0.05 to 0.02. Thereby, the second approximation 

evidently gives better results and describes more accurately the structure of excited states and, 

especially, its features related to angular deformations. 

We then applied the second approximation model, without making any corrections, to other 

homologous — butadiene (Fig.2.1), hexatriene (Fig.2.2) and decatetraene (Fig.2.6). For all the 

molecules, it improves agreement with experiment as, for example, in low-frequency (~300 ÷ 400 

cm-1) range of hexatriene spectrum, as well as around major vibronic lines (~1200 cm-1 and ~1600 

cm-1) and for combination bands (compare experimental (4), first (1) and second (2) approximation 

curves on Fig.2.2). The effect is also noticeable in poorly resolved absorption spectrum of butadiene 

(Fig.2.1). 
Highly structured spectrum of decatetraene [64] (Fig.2.6) is shaped mainly by characteristic 

peaks 1
01 , 1

02 , 1
07  and 1

010  corresponding to excited state vibrations with frequencies eν =132, 405, 

1230 and 1651 cm-1 (for mode numbers refer to [52]). Calculated values of these frequencies are 

cν =146, 403, 1239 and 1641 cm-1, respectively, that shows good quantitative match with 

experimental picture. Weak bands 1
05 , 1

06  and 1
08  overlap with stronger line 1

07  giving rise to 

complex structure in this region, well reproduced in simulations. While modes 1 and 2 represent 

deformation vibrations, modes 7 and 10 contain a mix of CC bond stretchings and CCC and CCH 

angular vibrations. So, it comes as no surprise that in the first approximation with complete neglect 

of angular parameters, computed intensities differ markedly from experimental ones (Ie( 1
07 )=0.2 and 

Ic( 1
07 )=0.32, Ie( 1

010 )=0.52 and Ic( 1
010 )=0.63, Ie( 1

01 )=0.2 and Ic( 1
01 )=0.05, 1

02  vibration is not present 

in the spectrum at all).  Note how going to the second approximation improves these things: 

Ic( 1
07 )=0.14, Ic( 1

010 )=0.54, Ic( 1
01 )=0.18, also progression 2

01  and low-frequency band 1
02  appear; the 

sum of relative differences between theoretical and experimental intensities reduces fourfold (from 

0.38 to 0.1). Characteristic shape of 1
07  band approaches experimental one and can now be explained 

by the presence of weak, unresolved in experiment, adjacent lines Ic(1260 cm-1)≅0.01 and 

Ic(1289 cm-1)≅0.03 that correspond to totally symmetric vibrations. Similarly, the origin of 1
010  
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asymmetry can be traced to existence of 1
09  satellite with Ic(1662 cm-1)≅0.1. In our analysis, as 

distinct from [64], 273 cm-1 band is assigned to the second harmonics 2
01 .  

Yet another evidence for the parametric method to be efficient at describing fine spectral 

effects in large molecules (some tens of atoms) comes from consideration of methyl-substituted 

polyenes. Indeed, detected spectral shifts associated with methyl-substitution match experimental 

results within accuracy less than 3% and correctly reproduced shift directions. For example see 

octatetraene (OT), Fig.2.5, and decatetraene (DT), Fig.2.6: the strongest 1
010  band ( ОТ

eν =1645 cm-1), 

which is almost unaffected, shifts so that DT
c

OT
c /νν =1.02 versus DT

e
ОТ
e /νν =1.0, while low-frequency 

deformation vibrations 1
01  ( ОТ

eν =197 cm-1) and 1
02  ( ОТ

eν =348 cm-1), sensitive to substitution, show 

DT
c

OT
c /νν =1.5 versus DT

e
ОТ
e /νν =1.49 and DT

c
OT
c /νν =0.85 versus DT

e
ОТ
e /νν =0.86, respectively. Similar 

trends were observed for intensities. Both experimental and calculated intensities at 1
010  are ~10% 

smaller for decatetraene ( ОТ
cI =0.57, DT

cI =0.54 and ОТ
eI =0.6, DT

eI =0.52); 1
09  band ( ОТ

cν =1622 cm-1, 

ОТ
cI =0.11 and DT

cν =1662 cm-1, DT
cI =0.08) undergoes a shift by ~40 cm-1 upon substitution and 

appears as either low-energy (OT) or high-energy (DT) shoulder near 1
010 , reproducing correctly the 

observed line shape in this region. The next strong composite profile around 1
07  changes mainly in 

intensity ( %3≤∆ν , %15≈∆I ), due to the growth of weaker overlapping 1
06  band. Low-frequency 

1
01  component exhibits the maximal change in intensity (2 times), as well as in line position, upon 

methyl-substitution. 

Simulations have shown that as the length of polyene chain increases, general spectral pattern 

stays the same, but some redistribution of intensity between major bands occurs, so that intensities of 

valence modes (~1650 and ~1250 cm-1) scale approximately as 5.056.1 −= CCNI  (accurate within 

%5<∆I ), while intensities of deformation modes (≤ 500 cm-1) as 7.1003.0 CCNI =  ( %25<∆I ), where 

CCN  is the number of C–C bonds. This is an indication of the importance of angular parameters 

(second approximation) for simulations of longer polyenes. 

Here we see that parametric method, even with minimal number of parameters (only 2 in the 

first approximation), allows to develop quantitative transferable models of polyenes in excited states, 

perform spectroscopically accurate predictive calculations and detailed interpretation of spectra. An 

advantage of the parametric method at capturing major features of excited states is illustrated on 

Fig.2.2, where curve 3 shows the same hexatriene spectrum simulated by alternative quantum 

chemical method [63, 65, 66]. Similar results confirmed this for other molecules too [49, 50]. 
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Fig.2.7. Fluorescence spectra of anthracene calculated in the first (a) and second (b) approximations and 
experimental fluorescence spectra in  supersonic jet at 00-excitation (c) [67] and 4K n-hexane (d) [68]. 
 

 

 
Fig.2.8. Absorption spectra of tetracene calculated in the first (a) and second (b) approximations and 
experimental absorption spectrum (c) [69]. 
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Fig.2.9. Calculated in the second approximation (a) and experimental (b) [68] fluorescence spectra of 
tetracene.  
 

 
 

Fig.2.10. Calculated in the second approximation (a) and experimental in supersonic jet upon 00-excitation 

(b) [67] fluorescence spectra of anthracene-d10. 
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Fig.2.11. Calculated (lower) and experimental (upper) [67] dispersed fluorescence spectra of anthracene at 
S1+583 cm-1 (a) and S1+237 cm-1 (b) excitation. 

 

 

2b. Acenes 

Comparison of calculated in the first approximation [49] spectrum of anthracene (Fig.2.7a) 

with the results of experiments (Fig.2.7c,d) [67, 68] finds good overall agreement up to weak totally 

symmetric modes. However, we note significant differences, for example, in intensities of 0
112  

(ve=391 cm-1), 0
18  (ve=1163 cm-1) and 0

1
0
1126  (ve=1797 cm-1). The sum of discrepancies reaches 0.48 

in relative units. For tetracene, essentially the same picture is observed (Fig.2.8a,c). 

It seemed a priori reasonable that for polycyclic compounds, in which changes of C–C bonds 

are often accompanied by angular deformations, the second approximation with its angular 

parameters (first derivatives with respect to CCC and CCH angles) will be expected to improve 
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accuracy. The system of parameters was optimized for anthracene (see the best fit obtained, 

Fig.2.7a,b) and basically takes the form of small (~10%) corrections to the first approximation 

model: 07.0=∂∂ 1b
irs qH π  a.u., 008.0=∂∂ CCCa

irr qH π  a.u., 002.0−=∂∂ CCHa
irr qH π  a.u. and 

3.022 =∂∂ b
irs qH π  a.u.. As Fig.2.7b indicates, corrected approximation reproduces all vibronic bands 

present in the experimental spectrum, except for those (for example, 0
13  at ve=1643 cm-1) that was 

previously interpreted as related to either nontotally symmetric b1g vibrations [67] or different matrix 

site [68]. This is consistent with Franck-Condon approximation and confirms correct assignment of 

these bands. Detailed comparison has shown that going to the second approximation reduces overall 

sum of relative differences between calculations and experiment from 0.48 до 0.13, mainly due to 

better agreement in 0
112  (ve=391 cm-1) and 0

16  (ve=1406 cm-1) bands, deformation modes 0
17  

(ve=1263 cm-1) and 0
18  (ve=1163 cm-1), second harmonics around 2500–3500 cm-1. In particular, the 

second harmonics of the 7th and 8th vibrations appear symmetrically about 0
14  in the calculated 

spectrum (Fig.2.7b), but in the experimental spectrum they are masked by stronger 0
14  and 0

13  bands. 

Following the same strategy, we tested efficiency and predictive ability of the system of 

parameters by transferring it to anthracene-d10 and tetracene (Fig.2.8-2.10) with no modifications 

introduced.  

Computed shifts in vibrational frequencies of anthracene upon deuteration are typically less 

than 3%, which is fairly close to the observed effect. Among active vibronic modes in the range 

1000–1300 cm-1, the largest shifts (100–320 cm-1) are detected for those with significant 

contributions from CCH angular vibrations. The intensities are also affected by a factor ranging from 

2 to 6 (see Fig.2.7 and Fig.2.10); 0
18  (ve=1163 cm-1) demonstrates 1325 −=∆ cmcν  ( 1315 −=∆ cmeν ) 

and 07.0−=∆ cI  ( 1.0−=∆ eI ), 0
17  (ve=1263 cm-1) changes by 1100 −−≈∆ cmν  with intensity 

decrement 08.0−=∆ cI  ( 07.0−=∆ eI ). Conversely, intensity of 0
15  band of anthracene-d10 spectrum 

is larger both in experiment (0.13) and calculations (0.23). Frequency shifts for other vibrations, 

including those that correspond to the strongest components in anthracene spectrum (for instance, 
0
112  at ve=391 cm-1), do not exceed 50 cm-1. Their intensities are found almost invariant to 

deuteration. These factors preserve characteristic structure of anthracene spectrum. Note good 

overall accuracy achieved in simulations of spectral effects caused by deuteration that validates also 

basic model of anthracene excited states in the second approximation. 

Shown on Fig.2.8,2.9 are simulated spectra of tetracene. Both curves (first and second 

approximations, Fig.2.8) fit well experimental data, but evidently the second approximation provides 

closer match. See low-frequency band νe=314 cm-1, complex structure around 600 см-1, two satellites 
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in the region 1000–1200 cm-1. Half-width of ~1200 cm-1 band is larger in the experimental spectrum 

than the others, that suggests existence of two adjacent lines with comparable intensities revealed by 

simulations. Note especially that good agreement with the experiment for tetracene was obtained 

with the system of parameters taken “as is”, i.e. without solving an inverse problem. 

Efficiency of the method and the system of parameters find another justification in 

quantitative predictions of spectra measured under different experimental conditions. Here we 

consider spectra of dispersed fluorescence of anthracene [67] and compare them with the spectra 

simulated with selective excitation to various single vibronic levels (Fig.2.11). The model provides 

essentially the same level of accuracy as reported above for predictions of conventional spectra, 

while dispersed fluorescence, being rather sensitive to variations of excitation conditions, involves 

quite different sets of vibronic transitions in each case. 

Thus, the parametric method has proved to be an accurate and efficient technique to tackle 

direct problem of computing vibronic spectra. It allows to perform quantitative predictions of 

structure and properties of molecular excited states and radiative vibronic transition probabilities, 

including fine spectral effects associated with various substitutions (methyl-, phenyl-, deutero-). 

These results are found in good agreement with a number of independent spectral experiments and, 

thereby, confirm possibility of predictive calculations based on the use of small (3-4 atoms) 

characteristic molecular fragments. Such building blocks (or mini-models) can be calibrated on 

different levels of approximation depending on the complexity of system under consideration, but 

the number of relevant, physically reasonable parameters is expected to remain small. This latter 

factor is believed to be a key to development of specialized databases of molecular fragments that 

store information accumulated through solution of inverse spectral problems. 

 

3. Modeling time-resolved vibronic spectra 

It appears quite natural to develop the parametric approach towards modeling time-dependent 

spectra, which apparently bring more information as compared to conventional vibronic spectra. At 

first sight, it may seem, though, that all one need to compute dynamical spectrum are the 

probabilities of vibronic transitions ijw  that can be estimated by the parametric method described in 

previous sections. However, in practice, a number of questions and problems arise.  

First, to what extent the parameters of molecular model obtained (calibrated) with the use of 

conventional (stationary) spectra will be good for modeling time-resolved spectra? 

Second, the effect of environment (molecular interactions) may substantially alter the picture 

seen in spectral experiment with time resolution with the problem being to distinguish between 
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contributions from non-radiative and optical transitions. 

Third, absorption, as well as radiative and non-radiative relaxation processes can induce 

isomerization, which is an issue of particular interest in photochemistry. In part, this problem is 

traced back to calculating probabilities of optical and non-radiative inter-isomer transitions. 

Fourth, in regard to purely computational aspects, besides the fact that an extensive number 

of transition probabilities ijw  have to be calculated, even in case of mid-size molecules (≈ 20–30 

atoms) a high dimensional (N 310> ) system of differential equations is to be solved for time-

dependent populations )(tni . Although general methods are well-known, their applicability and 

performance in large-scale computer simulations are questionable, especially for iterative solution of 

inverse problems.   

Studies in these directions are underway (for recent results see: nonradiative transitions [70], 

optical inter-isomer transition probabilities [16, 71], generalized inverse problems in vibronic 

spectroscopy [72]). Here we shall focus primarily on the first part of the problem – direct calculation 

of time-resolved vibronic spectra for a model of isolated molecule and transitions within single 

isomer form. 

A dynamical time-resolved fluorescence spectrum can be represented as a three dimensional 

(3D) surface showing dependence of intensity on both frequency and time: 

)(),( tnwhtI iijijijij ⋅⋅ν=ν ,        (3.1) 

where ijν  and ijw  are the frequency and probability of transition from the i-th to the j-th state, 

)(tni  is the time-dependent population of the i-th state. 

 Hence, to construct such surface for a given molecular model it is necessary to (i) find 

transition probabilities ijw  for all pairs of N molecular energy levels and (ii) solve the system of 

kinetic (rate) equations for populations )(tni . Methods and software for calculation of vibrational 

and vibronic radiative transition probabilities are well developed [13, 16, 19, 20, 73-75] while the 

second task suggests that an efficient procedure for solution of high dimensional system of 

differential equations should be employed since preliminary estimates revealed low performance of 

standard techniques in real-time computer experiments and for realistic molecular models. 

For the set of N excited states sorted according to energy kinetic equations read: 

∑
+=

+−=
N

ij
jjiii

i nwnw
dt
dn

1
, i = 1,2,…N,      (3.2) 

where 0

1

1
i

i

j
iji www +=∑

−

=

 is the total probability (decay rate or inverse lifetime) due to transitions from 

the i-th state to all lower-lying states including the ground state ( 0iw ). Initial conditions 
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{ }Nini ...,,2,1),0( = may vary with excitation (e.g. resonance, broadband etc.). Using matrix 

notation, for the vector of populations )(tn , the system (3.2) can be rewritten as follows: 

)()( tPt
dt
d nn = ,         

where P is the superdiagonal matrix of probabilities 








>
<
=−

=
ji
jiw
jiw

p ji

i

ij

,0
,
,

.  

As analysis of applicable computational techniques has shown [76], for simulation of spectra 

approximate numerical methods are preferred. Here we proceed with simple first order Euler scheme 

[77] and obtain the map: 

.),()()( 11 ttttPttt kkkkk ∆+=⋅⋅∆+= ++ nnn  

Indeed, the speed of calculations according to this procedure scales as 2N  and there is no 

need to store any additional matrices except P. Besides, the algorithm can be optimized to gain in 

speed by a factor of about 100 by using explicitly the triangular form of matrix P and eliminating 

equations with trivial solutions once initial conditions are specified. But it is more important that 

numerical solution can be easily obtained for any matrix of probabilities (including one with 

degenerate eigenvalues that may appear in applications quite often). Moreover, the method becomes 

equally applicable to systems with time-dependent probabilities, as is the case when quantum beats 

associated with isomerization are to be taken into account. 

Some conclusions immediately follow from the analysis of kinetic equations [76].  

The time dependence of population of the i-th energy level and, hence, intensities of 

transitions originated from this level, will show multi-exponential behavior determined by the total 

probability iw  and those of higher levels kw  (k>i). Note that the system of molecular energy levels 

can be split into groups of vibrational sublevels that belong to different electronic states. Consider 

the ground state (0) and the first excited state (1) and their vibrational sublevels denoted by the 

symbols f and i (these indices refer to sets of quantum numbers). Then the total probabilities of 

optical vibronic transitions from sublevels of the excited state to sublevels of the ground state (here 

the probabilities of nonradiative vibrational transitions within excited state manifold are assumed to 

be zero) are given by: 

∑∑ →

→ ⋅== →
ff

fii fi

fi
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3
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34
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64
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νπ
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where fi ,0,1 →ω  is the frequency and fi ,0,1 →µ  is the dipole moment of vibronic transition. 
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Fig.3.1. Spectra of butadiene calculated with zero (a) and nonzero (b, c) probabilities of nonradiative 
vibrational relaxation (resonance excitation of vibrational mode 1cm3000 − (a, b) and 1cm1620 − (c) of 1S  
electronic state). The probabilities of vibrational relaxation are 60% of electronic one. 
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Fig.3.2. Time-resolved fluorescence spectra of hexatriene upon excitation to 2S  electronic state. 

 
 

Fig.3.3. Time-resolved fluorescence spectra ( 01 SS → ) of octatetraene upon excitation to 1S  (a) and 

1S +1620 cm-1 (b) vibronic states. 
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Fig.3.4. Simulated dynamical spectra of octatetraene under resonance excitation of totally symmetric mode 
1cm1283 −=ν  (a) and nontotally symmetric overtone mode 1cm1276 −=ν  (b) of the first excited 

electronic state 1S . 
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In Franck-Condon approximation these probabilities are proportional to the overlap integrals 

of vibrational wave functions fi  and for small changes in geometry upon excitation, which are 

typical for polyatomic molecules, we obtain: 
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where 10ω  and 10µ  are the frequency and electronic dipole transition moment. 

 One can see from equation (3.3) that total probabilities for all vibrational sublevels of an 

excited electronic state of isolated molecule are the same as determined by values of 10µ  and 10ω  for 

electronic transition. It was also verified experimentally (see [78]) with the use of time-dependent 

intensities of dispersed fluorescence spectra. So, to a first approximation (probabilities of vibrational 

transitions are negligibly small), all lines within a single electronic spectra, say, 01 SS → , will 

exhibit uniform multi-exponential dynamics, but their intensities will still depend on individual 

probabilities of vibronic transitions kjw ,0,1 → . The implication here is that any differences in time 

profiles can serve as signatures of vibrational relaxation. 

 If high vibrational levels (overtones and combination bands) are selectively excited, 

relaxation may include transitions with almost equal probabilities (particularly those that would have 

the highest intensity with the change in vibrational quantum number of 1). In this situation the 

system of kinetic equations does not split into separate blocks but has degenerate (or close to 

degenerate) eigenvalues and general solution is sought. Partly for this reason, we have built all our 

algorithms and software making use of numerical integrator rather than attempting to derive an 

analytical solution in every single case beyond the simplest, easily diagonalizable system. As an 

additional reward, this strategy provides maximum flexibility for further extensions of the model.  

Shown on Fig.3.1-3.3 are some examples of simulated time-resolved spectra for butadiene, 

hexatriene and octatetraene when various vibronic states (purely electronic, totally symmetric and 

non-totally symmetric vibrations) are initially excited.  Spectral patterns that correspond to different 

symmetries of vibrational wave function appear qualitatively distinct. Even small deviation in 

excitation frequency ( 110 −≈∆ cmν ) is detectable (see Fig.3.4) by comparing relative intensities of 

strong lines ( 0≤ν ) and by the absence of signal for frequencies above the electronic origin ( 0>ν ). 

This, in particular, gives an estimate for the selectivity of excitation required to produce a good 

experimental spectra that can be compared with simulations or used for solution of an inverse 

problem. It is also notable that excitation of totally symmetric vibrations gives rise to more 

informative spectra and simulations can help in the search for conditions which would be optimal for 
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a specific experiment pursuing quantitative or qualitative analysis (for example, frequency of the 

most active mode can be estimated). 

 What might also turn out to be nontrivial is the issue of finding appropriate spectral and 

temporal ranges for experimental measurements if the set of high-energy molecular levels is excited 

by a broadband pulse. Under such conditions decay evolves through a number of intermediate 

vibronic states so that fluorescence spectrum is expected to be quite complicated. For example, as 

shown on Fig.3.5, the full time-resolved spectrum of diphenylbutadiene excited into 5S  electronic 

state consists of strong band due to transition 05 SS →  and substantially (approximately by a factor 

of 100 and 1000, respectively) less intense components 01 SS →  and 14 SS →  (all the rest transitions 

have zero probabilities). Modeling can help determine that, in this case, the properties of 

intermediate 1S  and 4S  states and transition probabilities can be retrieved (through solution of 

inverse spectral problem [79, 80]) from weak and slowly changing spectra of transitions 01 SS →  

(Fig.3.5d) and 14 SS → (Fig.3.5e) measured within the spectral ranges 1cm3600029000 −÷  and 
1cm100004000 −÷  correspondingly with required time being approximately ps2500≈observt .  Note 

that it could be difficult to make such estimates just left with a full experimental spectrum like 

shown on Fig.3.15 alone and without simulations, cause due to low sensitivity or insufficient 

spectral/temporal resolution details of weak 01 SS →  and 14 SS →  transitions could almost 

completely be hidden under the strong 05 SS →  (Fig.3.15c) band. Thus, model calculations can 

effectively guide searches for spectral regions that contain “trace amounts” of information on 

structure and dynamics of intermediate states.  

For solution of an inverse problem it is important to have as detailed experimental spectrum 

as possible which presumably should depend on most parameters (transition probabilities) to be 

determined at once. Computer experiments confirm strong dependence of dynamical spectrum on 

excitation conditions and what immediately follows from this is the possibility of controlling 3D 

spectral signal for a given molecule. For example, if 1S  electronic state is excited, 01 SS →  spectrum 

(Fig.3.6a) apparently gives only probabilities of transitions originating from the vibrational sublevels 

of 1S  manifold. Alternatively, once a molecule is excited by two synchronous laser pulses ( 1S  and 

5S  are initially populated), this same spectrum now depends on all nonzero probabilities of 

transitions between states below 5S  and ratio of intensities of excitation pulses  1I  and 5I . At 

10015 =II  this effect is still quite small (Fig.3.6b), but under optimal conditions ( 010015 =II , 

Fig.3.6c) multi-exponential profile of 01 SS →  dynamical spectrum reflects explicitly the total 
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probabilities (decay rates) of all three excited states 1S , 4S  and 5S  ( 3S  and 2S  do not contribute due 

to zero probabilities of 35 SS → , 34 SS → , 25 SS →  and 24 SS →  electronic transitions). Note that 

such control over spectral picture comes from the use of additional pulses, while simple excitation to 

high electronic states ( 5S , Fig.3.5d) does not help — 01 SS →  spectrum is almost entirely 

determined by the lifetimes of 4S  and 5S  and does not clearly show decay of 1S  (corresponding 

weak component can be traced only over relatively short times, pst 80< ). Here the role of the 

second pulse is to strengthen this weak band making it possible to extract its probability from 

experimental spectrum. 

It is also essential that direct simulations of dynamical spectra together with experimental 

data and methods for solution of inverse problems can eventually provide insights into probabilities 

of nonradiative vibrational processes in excited electronic states. As mentioned above, vibrational 

relaxation manifests as differences in time dependences of individual vibronic lines. A quantitative 

approach to this problem and technique that would allow for possibility of obtaining the values of 

probabilities from spectral data suggests certain experimental setting that makes the effects 

associated with nonradiative dissipation reliably detectable. Consider the case when probabilities of 

vibrational transitions vibrw  are comparable with those of electronic transitions elw . Due to sensitive 

dependence of time-resolved spectrum on variation of excitation conditions, with increasing energy 

of excitation pulse spectrum evolves from almost identical to that calculated with 0=vibrw  (compare 

Fig.3.7a and Fig.3.7b) toward complex nonuniform (Fig.3.7d) and multiexponential (Fig.3.7f) 

structures. Such experimental spectra obtained with broadband excitation to high-energy sublevels 

carry more information about relaxation processes and can be more effectively used. Indeed, the 

possibility to extract the values of nonradiative transition probabilities from 3D spectrum comes 

from the fact that intensities depend on different total probabilities ∑+=
j

vibr
ij

el
i www . In turn, vibr

ijw  

are defined by the parameters of molecular model (in particular, by the intermolecular potential 

[70]). So, direct variation of these parameters can give the values of vibr
ijw  (along with variable 

parameters themselves) as the calculated spectrum approaches experimental one in the course of 

iterations. The amount of information contained in the experimental spectrum, thus, clearly 

correlates with the number of spectral lines that exhibit various behaviors.  
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Fig.3.5. Full-scale calculated spectra of diphenylbutadiene under excitation of all vibrational sublevels of 5S  
electronic manifold (a), its sections at ps2000,1000,500,0=t (b) and spectral regions that correspond to 
different electronic transitions (c, d, e). 
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Fig.3.6. Spectra of 01 SS →  transition in diphenylbutadiene upon excitation to 1S  state (а), 1S  and 5S  states 
simultaneously with relative intensities 10015 =II  (b) and 010015 =II  (c). 
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Fig.3.7. Dynamical spectra of stilbene upon wide-band excitation of vibrational sublevels of 1S  electronic 

state calculated with zero probability of vibrational relaxation (a, c, e); (b, d, f).— the case when probability 

of vibrational relaxation is comparable ( 1.0=elvibr ww ) with electronic one. 
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 Thereby, simulations of dynamical vibronic spectra being a window into developing 

quantitative models of nonradiative processes, can help extend methods of quantitative and 

qualitative standardless analysis based on time-resolved spectroscopy [81, 82] to the case of dense 

media (solid gases, liquids) where the effect of collisional nonradiative intermolecular relaxation is 

important, since molecular interactions irreversibly transfer some part of excitation energy into 

external (translational) degrees of freedom that results in increase of ensemble temperature. 

Quantitatively, the probabilities of nonradiative transitions NR
ijw  appear in expressions for time-

dependent populations and fluorescence intensities ∑ −

k

tw
ik

NR
ijijij

keAwtI ~),(ω , where total 

probabilities now consist of radiative and nonradiative components NR
k

R
kk www += , whereas 

coefficients ikA  depend on individual transitions probabilities NR
lm

R
lmlm www += . Unfortunately, 

methods of inverse spectral problems do not give an unambiguous solution for unknown NR
ijw . Part 

of the reason is that these quantities, even if determined for a given molecule, do not satisfy the 

transferability property, and so cannot be used for modeling spectra of different molecules of the 

same family or in different experimental conditions. Moreover, having measured relative intensities 

∑ −=′
k

tw
ikijijijij

keatItI ),(),( ωω , where ∑ ′−==
k kikiiikik twABBAa )exp(,/ , one can find 

parameters ikA  only accurate to constants iB  and, hence, quantities NR
ijw  as well as R

ijw  are accurate 

to 0B , which corresponds to some reference line in the spectrum, because in a spectral experiment 

the fraction of excitation energy transferred to thermal modes due to collisions is left unknown. This 

uncertainty can be resolved either by using spectra with absolute intensities, although it is difficult in 

practice, or via an additional measurement of change in temperature or other thermodynamical 

parameters of sample (for a review on photothermal spectroscopy see [83]). We shall also discuss 

nonradiative transitions in the next section. 

 Quite often, features of conventional spectra (without time-resolution) of a number of 

molecules (for example, polyenes, phenyl- and diphenylpolyenes), their stereoisomers or substituted 

forms (cis, trans-isomers, deutero-, methyl-, phenyl-substituted) are almost identical [16, 48-51, 63-

66, 84-86]. In this situation differences in intensities of major vibronic lines (~10%) may fall, in fact, 

within the error bar of calculations that makes interpretation of such spectra, much less identification 

of compounds (especially in a mixture), nearly impossible. This obstacle significantly restricts the 

use of some spectral methods in analytical chemistry and photochemistry (in particular, if 

photoisomerization is involved [33]). 
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Fig.3.8. Calculated time-resolved fluorescence spectrum of the mixture of rotational isomers of octatetraene. 

 

 

 

 

 
 

Fig.3.9. Calculated time-resolved fluorescence spectrum of the mixture of rotational isomers of phenyl-
substituted butadiene. 
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The approaches from time-resolved spectroscopy provide a technique to tackle these 

problems in a more efficient way. Shown on Fig.3.8 is 3D spectrum of mixture of cis- and trans-

octatetraene and its sections at different times. It is clearly seen that evolution of spectrum suggests 

that contributions from different components of mixture can be distinguished (assigned) based on 

their unique time-dependences (those strong bands that correspond to trans-isomer are marked with 

asterisks). It was verified in [81] that such characteristic differences in time profiles allow to perform 

both qualitative and quantitative analyses in a wide range of relative concentrations (in this case — 

from 45.0/ =transCC  up to 45/ =transcis CC ).  

Note also that while energies of purely electronic transitions of isomers differ only slightly, 

by one or two vibrational quanta (~2000 cm-1 for cis- and trans-octatetraene), simultaneous 

excitation of mixture components by even spectrally narrow pulse produces quantitatively distinct 

distributions of initially populated vibronic states at each of the isomers. For instance, the spectrum 

on Fig.3.8 represents dynamics occurring when purely electronic state of trans-octatetraene and 10 

sublevels (totally symmetric vibrational modes with energies 120000 −<< cmω ) of cis-octatetraene 

are initially excited. This gives the presence of signal in the range above the electronic origin for cis-

octatetraene as another signature of this component in the mixture. 

The use of dynamical spectra can be equally efficient also in the case when the problem is to 

identify molecules with different locations of substituents and it is difficult to do that using spectra 

without time resolution. For cis- and trans-diphenylbutadiene computed differences are typically less 

than 10% for frequencies, intensities in vibronic spectrum and energies of electronic transitions 

( 33400 and 133000 −сm ). This can be traced to almost identical structure of polyene chains in such 

compounds. In addition, as calculations have shown, changes in electron density upon transition to 

the first excited state are well localized mainly within the chains rather than phenyl rings. For this 

reason, bond lengths and force constants in “polyene fragments” show 2-3 times greater changes (as 

compared to phenyl rings) specifically responsible for the structure of vibronic spectrum and its 

independence on locations of substituent groups. At the same time, these species can be identified by 

characteristic decay profiles in time-resolved spectrum (see sections on Fig.3.9), even though bands 

overlap each other. It was also confirmed by computer experiments that efficiency of such 

recognition procedure increases as molecules are excited to higher electronic states.   

The researches summarized herein have been aimed to show some new potentials and 

efficiency of approaches from time-resolved spectroscopy as estimated by means of simulations. In 

this still developing field computer experiments and molecular modeling [76, 81, 87] can be very 
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useful, able to guide experiments with an appropriate choice of optimal conditions and settings that 

would otherwise be hard or extremely resource-consuming to find in a purely empirical manner.  

 

4. Simulations of dynamical spectra and inter-isomer transitions 

 So far, the model of isolated molecule and transitions in the single isomer form were 

assumed. To further extend applications of computational methods described in previous sections, 

we address the problem of computing dynamical spectra when transitions between different isomers 

are taken into account. Together with methods developed for calculation of photoinduced inter-

isomer transition probabilities [18-20, 48-50, 73, 74, 82], direct simulations of dynamics provide an 

approach to mechanisms and rates of isomerization in polyatomic molecules.   

 We will make use of the theoretical model of isomerization proposed earlier [88]. External 

perturbation imposed on resonance levels of isomers ( 21 EEE == ) with nonzero coupling 

(nondiagonal element of energy matrix) gives rise to quantum beats, i.e. periodic oscillations in 

concentrations of isomers. This superposition state is described by the wavefunction 

titt ωψωψψ sincos)( 21 +=  or probability density: 

)sincos(~)( 22
2

22
1

2 ttt ωψωψψ + ,        (4.1) 

where oscillations of probability of finding the system in pure isomer states 1ψ  and 2ψ  follow 

tω2cos  and tω2sin  correspondingly. The frequency of quantum beats is defined by nondiagonal 

matrix element (doublet splitting): 

( ) ( ) ( )2,12,1
2112 2

1
νSSEEh e+= , 

where ( )2,1
eS  and ( )2,1

νS  are the overlap integrals of electronic and vibrational wavefunctions of 

isomers, respectively (Franck-Condon approximation), 1E  and 2E  are vibronic energies in the 

zeroth approximation. Methods for calculation of matrix elements and ω  have been developed in 

[18-20, 48-50, 73, 74, 88].  

The wavefunction ψ  appears time dependent, although in the following the energy levels are 

assumed stationary: 

 ( ) tdHdHH ωνψψνψψ 2
11 cosˆˆ ∫∫ == ∗ + ( ) tdH ωνψψ 2

22 sinˆ∫  = EtEtE =+ ωω 2
2

2
1 sincos ,  

where time-independent Hamiltonian Ĥ  acting on wavefunctions of isomers 1 and 2 yields the 

energies of resonant states, 111
ˆ ψψ EH =  and 222

ˆ ψψ EH = . As a result, the model represents a set of 
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stationary levels and optical transitions to and from common resonance level with probabilities 

defined by dipole transition moments ( )2i

j
µ  multiplied by tω2cos  or tω2sin .  

If, for example, an excited state of isomer 1 is initially populated, then decay evolves through 

two channels (isomers 1 and 2) with different rates. Some partion of excited molecules will, thereby, 

eventually undergo transition to the second isomer form. The system of kinetic equations will have 

essentially the same form, (3.2), but some of the probabilities ijw  will be time-dependent, 

twij ω2cos  or twij ω2sin , in every case where one of the combining states, i or j, belongs to isomer-

isomer resonance described by (4.1). The numerical technique and software discussed in the 

previous section are equally applicable to solution of time-dependent kinetic equations and 

computing dynamical spectra of coupled isomers. Here we outline some examples of numerical 

experiments.   

Resonant mixing of stationary levels of isomers (Fig.4.1) and quantum beats manifest as 

oscillatory behavior of intensities in time-resolved spectra (Fig.4.2). For this set of simulations the 

initial conditions were set so that only levels of isomer 1 are populated at 0=t , i.e. 

0)0()0(,1)0()0( 4321 ==== nnnn . Transition probabilities were chosen to be 1312 9.0 ww = , 

1323 7.0 ww =  and 2324 ww = . Intensities of 12ν  and 23ν  lines are directly related to resonance and 

demonstrate distinct oscillations. Note also how quantum beats, originated from resonance level 2, 

indirectly affect the time-dependent intensity of 13ν  line. The amplitude of these oscillations is 

defined by the proportion between 13w  and 12w . Transition 21→  contributes also to 23ν  band, 

whose intensity initially increases ( )2312 ww > , i.e. transition to isomer 2 occurs. With this 

transformation the growth and consecutive tω2sin  like dynamics of 42 →  spectrum are associated 

(Fig.4.2b). The quantum yield of isomerization is related to asymptotic ratio )0(/)( 14 ntn  at ∞→t , 

which is about 20% in this particular case. 

As a second example consider model calculations of isomer transformation from 

pentadiene-1,3 to pentadiene-1,4 under various initial conditions. These simulations were aimed to 

investigate the interplay between quantum beats and exponential decay of fluorescence intensities 

for realistic molecular models. We have determined that possible resonance may exist between 

1661 cm-1 (pentadiene-1,3) and 1293 cm–1 (pentadiene-1,4) sublevels of the first excited states, since 

these vibrational modes most closely match specific structural transformations of these molecules in 

the course of isomerization. The plots presented here show dynamical spectra upon broadband 

excitation (Fig.4.3-4.5) and selective excitation to 1661 cm-1 sublevel (Fig.4.6) of pentadiene-1,3 for 

w>>ω , w≈ω  and w<<ω , where w  stands for typical probability of single isomer radiative 
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transition (all intensities were normalized by their maximum values).  

These results indicate that while at w>>ω  (Fig.4.3) and w≈ω  (Fig.4.4) spectra of two 

isomers have nearly equal intensities, in the opposite case (slow quantum beats, w<<ω , Fig.4.5) 

signal from isomer 2 comes out 4 orders of magnitude lower than that of isomer 1. This means that 

such weak spectrum will be almost completely masked by overlapping strong bands of isomer 1. It 

was estimated that spectrum of isomer 2 can be reliably detected (with intensity at least 10% relative 

to isomer 1) if w7.0>ω . Low intensity of fluorescence from isomer 2 signifies low relative number 

(concentration) of molecules that underwent isomerization (this quantity approaches zero when 

w<<ω , but it is still 1.5% at w>>ω  and 2.0% at w≈ω ). Consequently, slow quantum beats have 

no effect on dynamics of spectrum of isomer 1 (Fig.4.5a), as compared to the case of isolated 

molecules. Note, however, that fluorescence signal from isomer 2 can still be observed if it falls 

within slightly different spectral range and does not overlap with dominant spectrum of the first 

isomer. 

Spectro-temporal patterns observed when w>>ω  (Fig.4.3) and w≈ω  (Fig.4.4) are similar 

and differ only quantitatively, mainly in frequency of quantum beats which appears explicitly in all 

time dependences. Spectrum of isomer 2 is fully modulated (its intensities approach zero at some 

points), while spectrum of the first isomer looks evidently more complex. This is due to not all the 

spectral lines exhibit oscillations; there are some that have nothing to do with resonance but 

contribute to superposition. It becomes clear when resonance level is exclusively selected by 

excitation (Fig.4.6) and all non-oscillatory contributions vanish. Dynamics of populations of the first 

isomer, its spectral response and quantum yield of isomerization are rather sensitive to variation of 

excitation conditions. But, as long as isomers are assumed coupled through the single resonance 

level, normalized spectrum of the second isomer does not change upon these variations (see Fig.4.4b 

and Fig.4.6b). 
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Fig.4.1. Energy levels and transitions due to resonance interaction between molecular isomers; emerging 

"isomer-isomer" state. 

 

 
 

Fig.4.2.  Fluorescence spectra of isomer 1 (a) and isomer 2 (b) for the model system (Fig.4.1). 
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Fig.4.3. Fluorescence spectra (S1→S0) of pentadiene-1,3 (a) and pentadiene-1,4 (b) upon wide-band excitation 
of pentadiene-1,3 with inter-isomer transition taken into account and w>>ω . 

 

 
 

Fig.4.4. Same as Fig.4.3 but w≈ω . 
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Fig.4.5. Same as Fig.4.3 but w<<ω . 
 

 
 

Fig.4.6. Same as Fig.4.4 but upon resonance excitation of pentadiene-1,3. 
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5. Nonradiative transitions in gases under optical excitation 

 Some of the spectral effects can be attributed to transitions without emitting electromagnetic 

radiation (nonradiative or radiationless transitions). Among them are: shape of the emission 

spectrum and fluorescence quantum yield are independent of the excitation wavelength (Vavilov’s 

law [89] for condensed phases or dense gases); fluorescence quantum yield is less than one; for the 

vast majority of organic molecules fluorescence originates from the lowest excited state of a given 

multiplicity (Kasha’s rule [90]). All these effects are related to ensembles of molecules. However, 

the common approaches to nonradiative transitions make use of the model of isolated molecule 

interacting with “bath modes”. Such models do not explicitly account for real properties of 

environment and individual molecules, nor do they provide a description for microscopic details of 

energy transfer. 

In dilute gases transitions between energy levels are necessarily accompanied by emission or 

absorption of electromagnetic waves (radiative optical transitions). Purely nonradiative transitions 

are possible only if there is some mechanism for transfer of excess energy to or from the external 

(with respect to isolated molecule) degrees of freedom. So, we arrive at the model of molecular 

collisions with relative positions of interacting molecules as extra degrees of freedom. Physically, 

nonradiative transitions represent the second (alternative to emission) channel for deactivation of the 

energy of initial optical excitation, which leads to an increase in ensemble temperature. Therefore, 

such dissipation manifests as a degradation of the total energy (integral intensity) re-emitted by 

molecules, rather than as a change in emission line shape. Here we pursue the goal of developing 

theoretical models of nonradiative transitions that would explain the observed effects and provide 

reasonable (at least semi-quantitative) description for them. 

For rare and moderately dense gases, we can rely on the hypothesis of “molecular chaos”, i.e. 

the absence of correlations between colliding molecules, and consider only pair-wise molecular 

interactions. This model is quite applicable for rare gases, which case we will stick to in the 

following, when the mean free path λ  is much greater than effective size of molecules 

)( LL >>λ . For polyatomic gases at normal conditions this requirement holds 

)10~,A10~,cm10~( 2
0

5 LL λλ − . Without the loss of generality, we will be content with the 

model of gas being an ensemble of N identical pairs of (different) molecules А–В. In general, while 

further considering multicomponent mixtures, one can separate the ensemble into partial subsystems 

with pair-wise interactions, e.g. for two-component mixtures that would give А–А, В–В and А–В, 

each of which can be treated by the method described below with summation over all subsystems. 
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To zero approximation, when internal and translational degrees of freedom are decoupled, 

the Hamiltonian of pair has additive form: 

,ˆˆˆˆ
0

TBA HHHH ++=         (5.1) 

and hence eigenfunctions read: 

 TBA ΨΨΨ=Ψ ,         (5.2) 

where BA HH ˆ,ˆ and BA ΨΨ ,  are the Hamiltonians and eigenfunctions of  internal vibronic degrees of 

freedom of isolated molecules A and B ( BBBBAAAA EHEH Ψ=ΨΨ=Ψ ˆ,ˆ ), TĤ  and TΨ represent 

the operator and wavefunction of relative motion of molecules ( TTTT EH Ψ=Ψˆ ). Here we speak of 

translations only and neglect relative rotations with the reason being that, due to rather weak 

coupling, the probability of collision energy transfer to rotational degrees of freedom appears much 

lower than to translational ones. Energy re-distribution between translational and rotational modes in 

thermal equilibrium can then be estimated using the theorem of equipartition of energy among 

degrees of freedom. Thus, we are left with a single coordinate, namely with the distance R between 

centers of mass of molecules A and B, describing their relative motion. 

 Since we are dealing with collisions, translations should be considered in half-bounded space 

of variable R or in a potential well that acts as a wall form the one side ),0( ∞→→ VR but does not 

restrict the motion from the other side )0,( →∞→ VR . In addition, molecules at close distances 

experience van der Waals interactions and the potential has a minimum at some distance 0RR =  

where the probability of finding the system is an order of magnitude higher than in the region of 

“force-free approach” )( 0RR >> . There exist a number of model potentials that have such properties 

allowing to describe both relatively long-lived dimer states and isolated molecules of a pair (for 

example, Lennard-Jones and Buckingham potentials, etc.). To make mathematics simpler we choose 

Morse wavefunctions with approximate representation being [91] 

 )]([)( 00 RRCosRRfNnorm
T −−=Ψ ω ,      (5.3) 

with 

 ( )∑
=








 −−
−=−

n

l
l

lRRCRRf
1

2

2
0

0
2lnexp)(

σ
σ .     (5.4) 

The number of terms in (5.4) n may vary depending on the nature of a problem; the 

parameter σ  should be set so that ( )0RRf −  approaches unity everywhere except boundaries of the 

domain of interest, while coefficients lC  come from variational solution of Schrödinger equation 

with Morse potential. The phase of oscillatory factor in (5.3) is chosen to be zero to maximize the 
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probability to find the system in the centre of the well ( )0RR = . The parameter ω  is directly related 

to the temperature of ensemble: kTM1−= hω , where M is the reduced mass of molecules A and B, 

k is the Boltzmann’s constant. Nnorm is just the normalization factor. 

 The main difficulty with using functions like (5.3), as well as any other functions that model 

molecular interactions, is that they cannot be normalized and corresponding spectra is continuous, 

which is characteristic to motion in half-bounded space. This difficulty can be overcome if we 

consider that the potential and function (5.3) simulate not just the behavior of two “isolated” 

molecules A and B, but rather interactions and relative motions of any pair of molecules in the media 

(gas) averaged over entire ensemble. In this sense, the distances between A and B do not exceed (in 

average) the mean free path λ  and, therefore, the domain for the model function (5.3) is defined by 

λ≤< R0 , which is equivalent to modification of the potential of molecular interactions, namely: 

within λ<< R0  it is the Morse potential, but at λ>R  it goes to infinity. The discontinuity that 

appears at λ=R  can be smoothed out in the neighborhood of this point.  

 We define thereby the normalizable function TΨ  that corresponds to TĤ  and describes 

relative translation of a pair of molecules. The appropriate choice of parameters in (5.3) can be 

obtained by variational method for the Schrödinger equation with a given Morse potential so that 

energies are determined with ~0.1%  error bar [91]. Note, however, that, strictly speaking, the 

wavefunction (5.3) is not an eigenfunction of any operator. But this fact is by no means a barrier for 

model approaches because it is not so important whether approximate potential or physically 

meaningful wavefunction underlies the model (see for example currently developing methods of 

so-called “intuitive” quantum mechanics [92]). 

It is also assumed that intensity of incident radiation is low so that all the interactions are 

linear. Then for a given energy level there are only “optical” and “thermal” channels of excitation or 

deactivation and these processes cannot take place simultaneously. In molecular systems transitions 

between different states are related to matrix elements of corresponding operators. Optical 

(radiative) transitions are associated with the dipole moment operator µr . Reasoning by analogy, we 

can introduce an operator of “thermal” transitions τ̂  with matrix elements being essentially the 

probabilities of such processes. These processes lead to establishment of macroscopic 

thermodynamical equilibrium, which is an effect of interest here, and increase/decrease of 

temperature when kinetic thermal energy of molecules is being absorbed/released. Therefore, while 

not working out the structure and details, we introduce operator ( )Rττ ˆˆ =  as an operator of 

translational interaction in the ensemble of colliding molecules that necessarily results in maxwellian 

distribution of velocities. This operator acts on translational wavefunction TΨ  yielding T ′Ψ  so that 



 46

the whole set }{ T ′Ψ for the ensemble of pairs corresponds to equilibrium distribution of velocities at 

temperature T ′ , and function T ′Ψequ  averaged over all pairs is related to mean parameters of thermal 

motion of molecules (in particular, to mean relative velocity u ). The dipole moment operator of two 

molecules reads as BA µµµ rrr
+= , where each Aµr  and Bµr  is a function of only internal coordinates 

of molecule A or B, respectively. For neutral molecules, even in case of strong interaction, the dipole 

moment operator µr  is an additive function and is independent of separation between molecules R . 

Therefore, the probability of optical transition between states 1Ψ  and 2Ψ  is defined only by the 

matrix elements of dipole moment which in zero approximation (5.1) gives 
TABTBA
12121212121212 δδµδδµµ rrr

+= . It is clear that this approximation explains optical transitions with a 

change of vibronic (internal) states of one of the molecules (A or B) only so that their translational 

state (and, hence, the temperature) is left invariable. Similarly, the “thermal” operator is 
BAT

12121212 δδττ =  and there are allowed “thermal” transitions without a change of internal molecular 

states.  Consequently, in zero approximation the effects of optical and “thermal” energy exchange in 

gas are clearly separated: nonradiative transitions do not occur upon optical excitation, whereas 

“thermal” energy transfer due to collisions may take place (which is observable as a macroscopic 

effect). 

To account for nonradiative transitions, we should refine the model by going to first 

approximation that includes dependencies of electronic parts of adiabatic wave functions upon 

translation coordinate ( ))(),( RRR B
e

A
e ΨΨ  and mixing internal motions of nuclei ( ))()( RR B

v
A

v ΨΨ  

with translations ( )TΨ . This can be done by solving the auxiliary vibrational problem for the system 

A+B with a very low force constant introduced for translation coordinate and additional nondiagonal 

matrix elements that describe mutual deformation of molecules upon close approach. The 

dependences )(),( RR B
e

A
e ΨΨ  can be obtained by conventional quantum chemistry methods if one 

solve for polarization of electron shells in the field of partner molecule at varying distances between 

centers of mass of A and B. 

So, the first approximation Hamiltonian can be presented in the form:  
BA

vT
BA

e HHHH ,,
0

ˆˆˆˆ ∆+∆+=  ,        (5.5) 

where the zero approximation Hamiltonian 0Ĥ  (5.1) is perturbed by mutual polarization of electron 

shells ( )BA
eH ,ˆ∆  and by interaction of internal vibrational coordinates with translation coordinate R  in 

the potential function of nuclei motion of molecular pair ( )BA
vTH ,ˆ∆ . 
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 Solution for the first approximation model (5.5) can be found by variational methods in the 

basis of zero approximation eigenfunctions assuming that their overlap matrix is unitary (the overlap 

between electron wavefunctions of molecules A and B in common Cartesian coordinates is 

negligible) and the diagonal elements of matrix H are just total energies of the system in zero 

approximation. The nondiagonal elements will be then:  
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     (5.6) 

 In the simplest form of operator BA
eH ,ˆ∆ , when interaction between electron shells reduces to 

dipole-dipole interaction and depends only on mutual orientation of dipoles and distance between 

them, nondiagonal (with respect to vibronic wavefunctions of A and B) matrix elements ( )kl
BA

eH ,ˆ∆  

vanish. Dipole-dipole interactions do not mix electron wavefunctions, no matter whether they belong 

to a single molecule or different molecules, i.e. purely electron wavefunctions do not change. 

Indeed, since each molecule is considered a point dipole and all the electrons are found in a uniform 

constant field, this gives only an additive correction to electron energy. Therefore, to this 

approximation, the only functions that mix are the vibrational wavefunctions of A and B and 

translational functions (through operator BA
vTH ,ˆ∆ ). This is equivalent to vibrational relaxation, i.e. 

nonradiative (due to collisions) transformation of internal energy of vibrationally excited molecules 

into the energy of thermal motion accompanied by the change in temperature. 

 For the mixing of electron functions and, hence, for the electron relaxation to become 

significant, it is necessary to take into account mutual polarizations of electron shells and 

corresponding corrections to their wavefunctions. When the dependence of electron functions on 

mutual orientation of molecules is small, we can stick with the simple expansion:  

( ) ( )
RR

R A
e

A
e

A
e

A
e

A
e

11
0 ∆Ψ+Ψ=∆Ψ+∞Ψ=Ψ       (5.7) 

(and for the molecule B in the same manner). Besides the method mentioned above, coefficients 
A

e∆Ψ  in (5.7) can be found applying the theory of perturbations with a given form of polarization 

part of operator BA
eH ,ˆ∆ . 

Taking (5.7) and discarding the second order terms, we obtain the nondiagonal elements (5.6) 
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where A
ekl

B
kl

B
ekl

A
klkl δαδαα += , [ ]∫ ∆ΨΨ+∆ΨΨ= A

e
A

ek
A

le
A

el
A

ke
A
kl dV00α  (the same procedure applies for B); 

and, by the orthonormal properties of basis functions, ∫ =ΨΨ≡ kl
C

w
C
wl

C
wk

C
wkl dV δδ  ( klδ  is Kronecker 

delta-symbol; C=A,B; vew ,= ). The matrix elements of the first kind klH ′  are responsible for 

mixing electron and translational states (functions) without a change in vibrational functions; 

quantities klH ′′ , in turn, describe mixing vibrational and translational functions leaving electronic 

parts unchanged. It is possible to write also the matrix elements that would mix electron, vibrational 

and translational states altogether 

∫ ΨΨΨ∆ΨΨΨ=′′′ − dVHRH T
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but these are smaller than previous two since they are proportional to BA
vTH ,∆α  . 

 Thus, operator BA
vTH ,∆  can be written as following: 

∑∑ +=∆
j

B
j

B
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i

A
i

A
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BA
vT RquRquH ,  ,       (5.11) 

where B
j

A
i qq ,  represent natural vibrational coordinates of molecules A and B; B

jR
A
iR uu ,  are the force 

constants attributed to interaction between internal motions with translation coordinate. We omit 

here the term 2RuR  along with the matrix elements of the Hamiltonian that are proportional to 

∫ Ψ∆Ψ dRH T
l

BA
e

T
k

B
vkl

A
vkl

B
ekl

A
ekl

,ˆδδδδ  reasoning that these factors have already been accounted for in model 

Morse potential (and in Hamiltonian 0H ) which describes translations in zero approximation.  The 

integrals (5.9) can then be easily computed since these quantities reduce to matrix elements of 

harmonic oscillator dqq vlvk ΨΨ∫  and Morse oscillator ∫ ΨΨ dRR T
l

T
k  or ∫ ΨΨ − dRR T

l
nT

k  for (5.8). 

Small nondiagonal elements of variational matrix H (see (5.8), (5.9) and (5.10)) may result in 

significant mixing between basis functions only when corresponding zero approximation energy 

levels are in resonance. Under such conditions, population of vibronic states excited due to optical 

dipole transitions will be accompanied by population of translational state with big increment in 

kinetic energy of relative motion of molecules A and B. This, in turn, will lead to excess number of 

fast molecules in the medium (compared to equilibrium distribution at temperature 0T ). Collisions 

will dissipate these fluctuations into new equilibrium state of the gas at higher temperature 01 TT > . 

So, part of absorbed radiation energy will be converted to thermal energy of molecular motion.  

Consider this in more detail. Let’s assume that the system is in thermal equilibrium at 

temperature 0TT =′  and all N pairs of molecules are in averaged Ψ′  state which is essentially the 

combination of molecular ground states BA Ψ′Ψ′ ,  and translational state TΨ′  of thermal motion with 
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mean velocity MTku π′=′ 4 . This means that all pairs are treated indistinguishable with respect to 

their translational dynamics averaged over statistical ensemble. As noted above, this allow to 

introduce the constraint λ<< R0  for translations and define function TΨ′  at temperature T ′ .  

To not complicate the discussion, we will assume that initial states do not mix and write them 

in zero approximation: 
TBA Ψ′Ψ′Ψ′=Ψ′ .         (5.12) 

Suppose further that only molecule A is initially excited and take the mix of two resonant energy 

levels: 

( ) ( )TBATBA cc Ψ′′Ψ′Ψ′+Ψ′Ψ′Ψ ′′=Ψ ′′ 21 .      (5.13) 

Then optical excitation considered in zero approximation will leave the same maxwellian 

distribution at temperature T ′  unchanged. 

 Going to first approximation we note that molecules will undergo transition into states with 

mixed wavefunction (5.13). Each i-th pair with relative velocity iu  will be excited into state iΨ′′  

( ) ( )T
i

BAiT
i

BAi
i cc Ψ ′′Ψ ′Ψ ′+Ψ ′Ψ ′Ψ ′′=Ψ ′′ 21      (5.14) 

(with initial state T
i

BA
i Ψ′Ψ′Ψ′=Ψ′ ). The probability of optical excitation for each pair is 

proportional to the dipole moment squared 

"'"' ,
1

,
A

i
ii c µµµ rrr

=Ψ ′′Ψ′= ,        (5.15) 

where ∫ Ψ′Ψ ′′= dVAA
A µµ rr "', , i.e. shows no explicit dependence upon translational states T

iΨ′ , but 

do depend on mixing coefficients ic1  that vary for different pairs (see below). The total number of 

optically excited pairs N∆  (population of mixed state) will be in proportion to the total probability: 

( ) ( ) ( ) ( )∑ ∑==
N

i

N

i

i
Ai c 2

1
2,2,2, "'"'"' µµµ rrr .      (5.16) 

In general, the velocity distribution for this statistical subsystem N∆  will deviate from maxwellian 

distrubution since the number of pairs moving with a given velocity iu  will be proportional to the 

product ( )21
i

u cN  ( uN  is the initial Maxwell distribution), i.e. it will depend on ( )21
ic .  

The mixing coefficients ic1  (as well as ic2 ) originate from nondiagonal elements of variational 

matrix (5.8), (5.9) and (5.10) and, hence, from integrals of the form ∫ Ψ ′′Ψ′ dRR TnT  which, using the 

approximate representation of Morse functions, are 
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( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )( )[ ]
( ) ( ) ( ) ,
2

121

0000

0000

ωωϕωωϕωωϕ

ωωωω

ωω

′′−′≈′′+′+′′−′=

=−′′+′+−′′−′−′′−′
′′′

=

=−′′−′−′′−′′′′≈Ψ ′′Ψ′

∫

∫∫
dRRRCosRRCosRRRfRRfNN

dRRRCosRRCosRRRfRRfNNdRR

n

nTnT

 (5.17) 

because ( ) ( )ωωϕωωϕ ′′−′<<′′+′ 12  due to the presence of fast oscillatory factor ( )RCos ωω ′′+′  in 

the integrand (5.17). 

 Note that as long as resonance conditions hold (see above), the change in translational kinetic 

energy TE∆  is the same for all pairs and it is also the energy of vibronic excitation evT EE ∆=∆  

itself. Therefore, const=′′−′ ωω  and, in the first approximation, all the coefficients ic1  can be 

assumed equal 11 cci = . Correspondingly, 

( ) ( ) NcA
2
1

2,2, "'"' µµ rr
=         (5.18) 

and velocity distribution of the excited subsystem N∆  will be again equilibrium (maxwellian), but 

with different mean velocity. 

 Indeed, for the mean-square velocity 2uu ′′=′′  of the subsystem N∆  we have: 

,22
2

222
2

22
1

22 ucuucucdVuu ∆+
′

=
″

+
′

=Ψ ′′Ψ ′′=′′ ∫     (5.19) 

where 2
0

222 uudRuu TT∫ =′=Ψ′Ψ′=
′

 ( 0u  is the mean-square velocity in the initial state), 

∫ Ψ ′′Ψ ′′=
″

dRuu TT 22 , 
′

−
″

=∆ 222 uuu and it is kept in mind that 12
2

2
1 =+ cc  by normalization. 

The subsystem of “internally excited” pairs of molecules N∆  ( )AA Ψ′′→Ψ′  will have its own 

temperature TT ′≠′′  and, since 2~ uT , we get: 

T
u
ucT

u
uTT ′>







 ∆
+′=

′′
′=′′ 2

0

2
2
22

0

2

1 .       (5.20) 

Thus, as a result of optical excitation, the gas consisting of N pairs of molecules undergoes 

transition to thermodynamically nonequilibrium state which is a composition of two statistically 

“equilibrium” subsystems: ( )NN ∆−  pairs of unexcited molecules at temperature T ′  with mean-

square velocity 0u ; and N∆  pairs of excited molecules with T ′′  and u ′′ , respectively. 

Collisions modeled by operator τ̂  bring the system to thermodynamical equilibrium at new 

(finite) temperature 1T . Presuming that in the first approximation operator τ̂  does not affect internal 

molecular states and the total energy of ensemble is conserved, we obtain with (5.19) that 

( )
222

2
0

22
1 MuNNuMNMuN ∆−+

′′
∆= , 22

2
2
0

2
1 uc

N
Nuu ∆

∆
+= . Since ( ) ( ) 2

1
2,2, "'"'~ cNNN Aµµ rr

=∆  
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then ( ) 2
0

2
2
2

2
1

2,
2
0

2
1 "'1

u
ucc

u
u

A
∆

+= µσ r  and ( ) 2
0

2
2
2

2
1

2,

0

1 "'1
u
ucc

T
T

A
∆

+= µσ r , where σ  is a coefficient in the 

expression for optical transition probability ( )2, "'µσ r
=w  which depend, in particular, on radiation 

flux density. Taking into account that for the model of pair-wise interactions kTET 2
1

=  and also 

evT EE ∆=∆  from resonance conditions, it follows that 
000

2
0

2

22
kT
E

kT
E

T
T

u
u evT ∆

=
∆

==
∆ δ  and 

( ) ( )
0

4
2

2,

0

2
2

2,

0

1 "'2"'21
kT
E

c
kT
E

c
T
T ev

A
ev

A
∆

−
∆

+= µσµσ rr  where we neglect the second order in 2
2c  terms (i.e. 

those that are proportional to 4
2c ). 

The first approximation model shows thereby that after absorption of radiation the 

temperature of gas will be ( ) 






 ∆
+=

0

2
2

2,
01 "'21

kT
E

cTT ev
Aµσ r . The increment in temperature due to 

optical excitation is ( )
k
E

cTTT ev
A

∆
=−=∆ 2

2
2,

01 "'2 µσ r  and the ratio of gained thermal energy 

( TkNE ∆=∆
2
1

therm ) to energy deposited through radiation ( evEwE ∆=∆ abs ) is then 

2
2abstherm 2

1 cEwTkEE ev =∆∆=∆∆  .       (5.21) 

 Expression (5.21) holds for 2
1

2
2 cc <<  and 2

1
2
2 ~ cc  as well. In particular, when mixing of 

wavefunctions is complete (degenerate energy levels), 21,21 abstherm
2
2

2
1 =∆∆== EEcc  and, 

hence, a half of radiation energy will be converted into heat. 

Here we see how the model of molecular interactions describes nonradiative transformation 

of absorbed energy into thermal energy of chaotic motion. As a consequence, the fluorescence 

quantum yield will be less than unity, which is observed in the experiments. The proposed approach 

enables to make quantitative estimates for nonradiative effects, since all matrix elements and 

coefficients in model operators can be easily calculated. Note that other cases of mixing between 

molecular states can be examined in a similar way. Consider, for example, states with wavefunctions 
TBA Ψ′Ψ′Ψ ′′  and TBA Ψ′′Ψ′Ψ ′′′  ( )A

v
A

e
AA

v
A

e
A Ψ ′′′Ψ ′′=Ψ ′′′Ψ ′′Ψ ′′=Ψ ′′ ,  that correspond to one and the 

same excited electron state of molecule A ( )A
eΨ′′  and various vibrational sublevels 

( )A
v

A
v Ψ ′′′Ψ ′′ and ; or various excited electron states of molecule A. Apparently, the first case gives 

an approach to nonradiative vibrational relaxation of excited vibronic state, while the second deals 
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with electron relaxation. Both types of relaxation can be observed experimentally and described 

qualitatively by Vavilov’s law and Kasha’s rule, respectively. 

Despite the fact that we have used restricted “two-level” approximation for simplicity, the 

method is applicable to “multilevel” mixing due to complex molecular interactions too. This, 

however, implies diagonalization of full variational matrix, which in no way represents a serious 

computational problem even for a big number of mixing vibronic states and high dimensional 

matrices [93]. It is also noteworthy for future studies and possible applications that the model of 

interactions between molecules in gases considered herein can be naturally incorporated into 

methods and software developed for simulations of dynamical time-resolved spectra.  

 

Conclusions 

 We have considered recent advances and applications in the adiabatic semiempirical theory 

of vibronic spectra, along with major features of the parametric method and associated 

computational techniques that now extend to time-resolved studies of polyatomic molecules, isomer 

transformations and nonradiative processes. Indeed, extensive computer simulations and approaches 

to inverse problems will be expected to fill the gap between purely theoretical molecular models and 

increasingly sophisticated spectral experiments, which, in any case, can give only indirect 

information on properties and dynamics of excited states. It is also clear that current models should 

eventually give way to more accurate approximations (for example, nonadiabatic theory, full 

treatment of time-dependent problem, etc.), but there will still be a challenge for maintaining 

intuitive description and clarity.  
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