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Abstract  
 Triple series 1I and 2I arising in WKB solution of a light scattering problem are analyzed in detail with 
the help of the operator factorization method allowing any hypergeometric series to be expressed, in a 
universal and flexible manner, through simpler series. We first connect the 1I and 2I with triple                 

hypergeometric series aF and bF . Then we set different factorized forms for aF and bF and establish 
Kummer - type transformations for these series. Further we reduce these triple series to double series and 
show that linear Kummer-type and quadratic Bessel-type transformations are applicable to the double 
series. Finally we give an example of how the basic properties of aF and bF can be used for finding more 
specific relationships for these functions. Indications are given of where essentials of the new method can 
be found. 
 
Keywords: Light scattering; WKB solution; Hypergeometric series; Factorization method; Transformations and reductions of   
multiple series. 
 
1. Introduction 
 Scattering data present fundamental interest in 
numerous natural and technological phenomena, 
radioastronomy observations, etc. Scattering    
problems have been the subject of intense            
investigation and research in course of last dec-
ades [1,2] including recent years [3-13]. The com-
plexity of the general scattering theory for non-
spherical particles makes it worth examination the 
possibility of applying the WKB approximation to 
modeling the scattering of light by spheroidal  
objects. 
 Recently, Shepelevich et al [11] and Belafhal et 
al [12] performed a study of the evolution of the 
extrema in the light scattering indicatrix of a ho-
mogeneous spheroid by using the WKB              
approximation. In particular, the study of the          
dependence of the extrema positions upon             
orientation of absorbing and nonabsorbing         
orientated spheroidal particles [13] allowed the 
form factor and the scattering amplitude to be   
presented in the form of the so-called Belafhal's 
triple series 1I and 2I (see Eqs. (1) and (2) below). 
 On the other hand, the diffraction and the              
scattering patterns resulting from the interaction of 
the incident light with objects which have a depth, 
as it was introduced by Belafhal et al [13,14], can 

be also connected with the series 1I  and 2I . For 
example, it was shown in Ref. [13] that the char-
acteristics of the intensity in the far-field region 
for a diffractive hemispherical aperture illumi-
nated by a plane wave can be described by  using 
a particular case of Belafhal's triple series. 
 Consequently, for mathematical advancement 
of the research exposed in previous papers we are 
forced to consider the Belafhal's triple series          
because they appear in many formulas of the               
diffraction and the scattering theories. As these 
series are essentially hypergeometric functions   
we firstly give a comment on traditional methods 
of analyzing these functions (see Sec. 2) to clarify 
the reasons making us to give preference to a new 
factorization method. In Sec. 3 we recast the series 

1I  and 2I  into explicitly hypergeometric form. In 
Sec. 4 we use the operator factorization method to 
represent the series 1I and 2I through simpler              
hypergeometric series. In Sec. 5, by applying the 
generalized Kummer transformation, we derive 
different expressions for the hypergeometric func-
tions appearing as substitutes for 1I and 2I . Reduc-
tion of the triple series to double series is given in 
Sec. 6 and, finally, in Sec. 7 we provide an appli-
cation of the Kummer transformation  to the dou-
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ble series. On the whole we give a general mathe-
matical basis for further investigation of any spe-
cific property of the series 1I and 2I which may 
present interest for physical applications.         
 
2. Remark on the standard analytical methods  
 "Like any part of mathematics which is very 
important there are many ways to look at                
hypergeometric functions" [15].  So many that the 
user of these functions often finds himself in an 
unsettling position when he runs out of standard 
functions and known results presented in               
handbooks and reference manuals. It is just the 
case with the triple series 1I and 2I . An attempt to 
obtain a new relation for a new function on one's 
own often turns out to be a disappointing experi-
ence because the value of the numerous traditional 
methods being used in the literature is greatly  
diminished by their cumbersome, not easily             
comprehensible structure (recollect Lie groups and 
symmetric spaces mentioned by Askey [15] as 
fashionable and powerful  methods for  investiga-
tion of hypergeometric series). Moreover, as a 
rule, each separate method has a limited                 
domain of applicability. In short, each class of 
formulas and sometimes even a class of functions 
should be considered in its own right. One cannot 
expect that a common user of hypergeometric 
functions and even a connoisseur of the domain 
would exhibit such an extraordinary universality 
of mathematical thinking. Therefore an attempt to 
employ the standard analytical methods for      
analyzing the series 1I and 2I  would have encoun-
tered with severe mathematical difficulties. 
 With the advent of the operator factorization 
method [16] the situation had changed                   
substantially. Now a researcher may have in his 
disposal a universal and simple calculation tech-
nique based on a limited number of factorization 
formulas and auxiliary identities. 
 That's why we use, for derivation of basic   
properties of the triple series, the new operator 
factorization method. The main advantage of this 
method over more common approaches is that it 
allows a hypergeometric series to be represented, 
in a universal and flexible manner, through            
simpler series. Using either the known properties 
of the simpler series or, more directly, the             
formulas which have been already obtained with 
the help of the factorization method, all basic 
properties of the initial series can be re-established 
in a straightforward manner. One of the aims of 
this paper is just to substantiate these statements 
by concrete examples.     

3. Recasting of the series 1I  and 1I  into              
hypergeometric form 
 The two series confronted by Belafhal in a light 
scattering problem have the form [12, 13] 
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where ( ),B kλ   is beta function defined by 

( ) ( ) ( ) ( ), /B k k kλ λ λ= Γ Γ +Γ , 

and  1
2F  is a particular case of generalized              

hypergeometric series (see  [17], vol. 1) 
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where ( ),a i   is  simple Pochhammer symbol 
 ( ) ( 1)...( 1) ( ) / ( ),a i a a a i a i a= + + − = Γ + Γ . 

A multiple hypergeometric series ( )1, ...,N
NF x x  

is usually defined as a series of power  functions 

[ ]1
1 1 ! !/N

N N
i ix x i i⋅ ⋅ ⋅⋅ ⋅ ⋅  with coefficients having 

the form of ratios of products of  compound  
Pochhammer symbols 

1 1( , )N Ni ia m m+ ,                                           (4) 

where 1, ..., Nii  are summation variables (for each 

1 , ..., 0, nNn i= ≤ ≤ ∞ ) and the spectral num-

bers 1, ..., Nm m  are assumed to be  arbitrary inte-
gers (see, for example, Refs. [18] and [19]). The 
elementary list of parameters corresponding to 
"elementary coefficient" Eq. (4) will be written in 
the list of parameters of N F  as 1| , ..., Na m m . 
As some of the spectral numbers implicitly occur-
ring in Eqs. (1) and (2) (as coefficients of the 
summation variable k ) assume half integer values 
our first step should lie in an appropriate change 
of the variable k  that would  permit us to get rid 
of half integer spectral  numbers. 
 Previously to the substitution we combine Eqs. 
(1) and (2) by introducing 
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1 , 0,1T Iδ δ δ+= = ,                                       (5)                                 
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We then break Tδ  into two parts corresponding to 
2k q δ= +  and 2 1k q δ= + − , respectively, 

where 0,1, 2, ....q = . Transforming the resultant 
two series to hypergeometric form and using  no-
tation of  Ref. [19] we have 
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Both hypergeometric series 3
aF  and 3

bF  relate to 
the  following  general type                                      
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Such a function does not relate to a standard type 
of hypergeometric series. We cannot hope to find 
its properties in manuals and reference books. We 
do not think that some web sites can be found to 
provide us with necessary information. The              
existent computer algebra systems are also still a 
very long way from being able to help us in                 
analyzing the functions like 3

gF . Thus we are   
confronted with the necessity to choose a method 
thatwould allow us to investigate the  func-
tions 3

aF  and 3
bF   on our own. This gives us a 

typical example showing that a researcher may 
readily find himself in a situation where he is 
compelled to deal with the subjects and methods 
of investigation deviating widely from his initial 
point of interest. Of course the method to be              
chosen should be simple, direct and encompass as 
many objects of conceivable interest as possible.     
 
 
 

4. Operator factorization method (see Refs. [16] 
and [18-29]) 
 This method satisfies all the above criterions. 
The main advantage of the method is that it allows 
any complicated hypergeometric series to be              
expressed through simpler series with the help of  
“Ω  - multiplication" operation. We call a function 
( )1, ..., Nx xw  the Ω -product of ( )1, ..., Nx xu  

and ( )1, ..., Nx xv  if 
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or ( ) ( ) ( ) 0/ |sxw u d ds v xs ==  in case of one 

variable. In both cases we write *w u v= . The 
most useful factorization formula is [18,20,21] 
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where ( )1, ..., NiL i  is an arbitrary coefficient. If 
we have several spectrally equivalent (having 
identical sets of spectral numbers) glueing                
(having more than one non-zero spectral numbers) 
parameters, we combine these in a double set d  
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The corresponding factorization formula is fairly 
analogous to Eq.  (12). We have   
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where p
qF  is the series defined in Eq. (3). Coming 

back to our initial problem we see that the series 
3

gF  in Eq. (10) has two spectrally non-equivalent 

glueing parameters | 011a  and | 111c . Thus 
we cannot get by with only one factorization for-
mula. By successive two-fold application of Eq. 
(12) we have 
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 The complete factorization of the 3
gF  is due to 

the fact that in absence of glueing parameters a 
multiple series brakes up into a product of simple 
series corresponding to individual parameters. 
 The advantage of the operator factorization 
method is clearly demonstrated by Eq. (13).             
Instead of the complicated analytical structure 
defined by Eq. (10) we have 5 very simple series 
in Eq. (13); three series are of Bessel type 0

1F  and 

two series are of binomial type 1
0F . 

 Looking at the initial series Eqs. (8) and  (9) we 
feel that denominator parameters 1/2 and 3/2 may 
well be linked with "individual" series 
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with exponential function by 
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However it would be difficult to justify this              
natural guess using traditional "classical" methods. 
On the contrary, Eq. (13) allows our hypothesis to 
be substantiated in a very easy and "constructive" 
way.To illustrate the flexibility of the  factoriza-
tion approach we interchange 1

0F (d/dt) and 1
0F (ξs) 

in Eq. (13) and then apply Eq. (12) to the func-
tions containing t and d/dt. The result is 
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where 2Ψ is the standard Humbert function ([17], 
vol. 1).  

 Performing such quick and useful tricks with 
versatile types of standard and non-standard func-
tions is beyond the capabilities of any other exist-
ing method.   
 
 5. Generalized Kummer transformation of  
3

aF  and 3
bF   

 We shall not use the formulas (13), (18) and 
(19) for the study of functions 3

aF  and 3
bF . A 

close inspection shows that there exists more con-
venient approach to examination of these                
functions. We first remind the definition of the 
partial type of a hypergeometric series. Suppose 
that all variables of the series ( )1, ...,N

Nx xF  

except of a chosen variable nx  are put equal to 
zero. The resultant simple series can be brought to 
the form of the generalized hypergeometric series 
(3). The set [ ]//n np q  indicating the numbers of 
simple numerator and denominator parameters is 
called the partial type of N F  with respect to nx  
[18-21]. 
 The most interesting cases are connected with 
the Bessel type [ ]0 //1 , the Kummer type [ ]1//1  

and the Gauss type [ ]2 //1 . The reason is that just 
these types are most typical for major part of            
applied problems. 
 An interesting feature of any series N F  having 
one of these three partial types is that such a series 
satisfies a transformation analogous to the                
corresponding transformation of a series in one 
variable. Explicit general formulas have been  
obtained for each of the three types [19,20,22]. 
 The "representative" series N F  in Eq.(10) has 
the partial types [ ]1//1 , [ ]1// 2  and [ ]1// 2  with 
respect to ,ξ η  and ζ . Therefore only Kummer-
type  transformation out of the three special trans-
formations can be applied to the 3

gF . 
The most general Kummer-type transformation is 
[20-23] 
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In Eq. (20) we put for brevity 

0 1 0 101 01, ,m mν ν ν= − = −m  
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where 1m  and 0m  are N -component sets of 

integer spectral numbers and *L symbolizes            
coefficient ( )1, ..., NiL i  independent of summa-

tion index 0i . The "vector" [ ]1,..., Nx x=x  is an 
N -component set of arguments. 
Converting Eq. (10) into canonical form [20-
22,24]   
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 In contrast to the case of the 3
gF    parameters 

a, b and c in Eqs. (8) and (9) obey the identity a=c 
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Unlike 3
aF  and 3

bF  we have two spectrally 

equivalent glueing parameters in 3 Fα  and 3 Fβ  

which allow us, contrary to Eq. (13), to manage 
with only one differentiation in the factorization 
formulas: 
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6. Reduction of triple series to double series 
 Using Eqs. (14)-(17) we express the products of 
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If we had used Eq. (30) directly for transforming 
the double product ( ) ( )0 0

1 1F Fy zξ ξ−  with 
1δ =  in Eq. (25) we would have confronted with 

singularity 1ξ −  which turns out a formal obstacle 
for application of the "glueing operator" 
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1 1 // 2 ; /F d dδ δ ξ+ +  at 0ξ = . To get rid of 
the singularity we use the elementary transforma-
tion 

 [ ]
1,1 ;

; 1 ( ,1)
2

F F
x

x x
+

= +
⎡ ⎤
⎢ ⎥
⎣ ⎦

d
d d , 

for the both series [ ]0
1 *//1/ 2F  in the right hand 

part of Eq. (30). The result (not containing  the 
above mentioned singularity) is       

* ; * ;

3 / 2 1/ 2

u v
F F
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

  

1 ; 1 ;

2, 3 / 2 2, 3 / 2
R R

W W
F F+ −

+ −= −
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

,                   (31) 

2( ) ( )

4 4
,R R

u v u v

uv uv
+ −

+ −
= =  .     

     The combined form of Eqs. (28) and (29) can 
be written as  
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* ; * ;

1 / 2 1 / 2

u v
F F

δ δ+ +

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

     

1 ;1
2

1 , 1 / 2

W
R F

δ δ

δ δ

+
+

−
=

+ +

⎡ ⎤
⎢ ⎥
⎣ ⎦

     

1 ;12 ( )
1 , 1 / 2

W
R Fδ δ

δ δ

−
−

−+ −
+ +

⎡ ⎤
⎢ ⎥
⎣ ⎦

.          (32)                                      

The combined form of Eqs. (32) and (25) is 
* ; * ;

3 / 2 1 / 2

u v
F F

δ δ− +

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

   

* ; * ;
( 1)

3 / 2 3 / 2

W W
T F T Fδ

=
+ −

+ −+ −
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

,          (33) 

1
2/T u v u v

δ δ−
+=+

⎡ ⎤⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦
, 

1
2/T u v u v

δ δ−
− = − ⎡ ⎤⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦

. 

Inserting Eq. (32) into Eq. (25) and using the                 
factorization formula (12) we obtain 

( ){ }23

2

1

2

1 :*; 1 ; ,
1

2 :*;1 ,
2

2/F y i z

x
F

i yz

w

δ

α

δ

δ δ δ

+

= +

+

+ + +

⎡ ⎤
⎣ ⎦

⎡ ⎤
⎢ ⎥×
⎢ ⎥
⎢ ⎥⎣ ⎦

( ){ }21

2
2/y i z i yz

δ
+ ⎡ ⎤− − ⎣ ⎦  

2
1 : *; 1 ; ,

1
2 : *;1 ,

2

x
F

wδ

δ δ δ

−+

+ + +

⎡ ⎤
⎢ ⎥×
⎢ ⎥
⎢ ⎥⎣ ⎦

,                     (34) 

2 2( ) , ( )w y i z w y i z+ −= + = − .                      
Inserting Eq. (33) in Eq. (26) and using the same 
formula (12) we have 

( ) ( ){ }3 1/21
1 1 /

2
F z y δ
β

δ −
= + −  

23 / 2 : * ; * ; , ( )

5 / 2 : * ; 3 / 2,

x y i z
F×

+⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

   

( ) ( ){ }1/21

2
1 1 /z y δδ −
− −+   

23 / 2 : * ; * ; , ( )

5 / 2 : * ; 3 / 2,

x y i z
F×
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

− .                 (35) 

The formulas (34) and (35) give us the desired 
reduction of triple series to two double series.  
 
7. Kummer transformation of double series 
 Each of the double series in Eqs. (34) and (35) 
has Kummer type with respect to x . To apply the 
Kummer transformation to these series we have to 
use canonical form of  the series (see Eq. (20)). To  

this end we only need to indicate, explicitly, the 
spectral numbers of glueing parameters in Eqs. 
(34) and (35). After making this we apply the gen-
eral formula (20) to yield 
2 1 1,1 : * ; 1 ; ,

2 1,1 : * ; 1 , 1/ 2

x w
F

δ

δ δ δ

±+

+ + +

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

* :1 ; 1 ;

2 1,1 : * ; 1/ 2

, wx F
x

e
δ δ

±=
+ +

−⎡ ⎤
⎢ ⎥
⎣ ⎦

,              (36)                       

and   
3/ 2 1,1 : * ; * ; ,

5/ 2 1,1 : * ; 3/ 2,
F

x w±⎡ ⎤
⎢ ⎥
⎣ ⎦

2 * : 1 ; * ; ,

5 / 2 : * ; *

xx Fe
w

= ±−⎡ ⎤
⎢ ⎥
⎣ ⎦

.   

                                (37) 
The functions 3

aF  and 3
bF  take the form: 

( ){ }23

2

1

2

* :1; 1 ; ,
1

2 :*;
2

2/F y i z

x
F

i yz

w

δ

α

δ δ

+

= +

+ +

⎡ ⎤
⎣ ⎦

⎡ ⎤
⎢ ⎥×
⎢ ⎥
⎢ ⎥⎣ ⎦

−

   

( ){ }21

2
2/y i z i yz

δ
+ ⎡ ⎤− − ⎣ ⎦

2
* :1; 1 ; ,

1
2 :*;1 ,

2

x
F

w

δ δ δ

−

+ + +

⎡ ⎤
⎢ ⎥×
⎢ ⎥
⎢ ⎥⎣ ⎦

− ,                        (38) 

( ) ( ){ }3 1/21
1 1 /

2
F z y δδ
β

−
= + −     

2
2 * :1 ; * ; , ( )

5 / 2 : * ; *
x y i z

F×
+⎡ ⎤

⎢ ⎥
⎢ ⎥⎣ ⎦

−  

( ) ( ){ }1/21
1 1 /

2
z y δδ −

+ − −

2
2 * :1 ; * ; , ( )

5 / 2 : * ; *
x y i z

F×
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

− − .                     (39)      

Note that functions 2 F  in the right hand part of 
Eq. (39) are standard Humbert function 3Φ  

2 * : 1 ;*; ,

5 / 2 : * ;*

x w
F ±−⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

3 1, 5 / 2; ,x w±≡ Φ −⎡ ⎤⎣ ⎦ .       (40) 

Yet another beneficial peculiarity of the functions 
is that they not only have Kummer type [ ]1//1  
with respect to the first argument but also the   
Bessel type [ ]0 //1  with respect to the second 
argument. Therefore we can apply to these            
functions a general quadratic transformation 
[22,23] 

2
0* ; ,

1,

L x
F

ν

−⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

x

m
0exp( 2 )x= −              

01/ 2 1, , *; 4 , 4

2 1 1, 2

mL x
F

ν

ν

−
×

−

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

m x

m

.                              (41) 

The final result is 
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2* :1 ; * ; ,

5 / 2 : *; *
exp( 2 )

w
F

x
w±

± =
−⎡ ⎤

= −⎢ ⎥
⎢ ⎥⎣ ⎦

   

2 : 1 ; * ; , 4

4 2,1 : * ; *

w
F

x ±
×

−⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

,                              (42) 

where y i zw± ±=  (see the line following 
Eq.(34)). 
 In conclusion we remark that the relations            
obtained above allow us to develop versatile 
means for further analysis of different functions 
introduced in course of our investigation. To give 
an example, consider the 2 F  occurring in Eqs. 
(39, (40). Using self explanatory transformations 
we have 
 

2
2 * :1 ;* ; ,

5 / 2 : * ; *

x w
F

−⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

0 1
1 0

2* ; / 1 ;
0|w sd ds

F F sc
xs

e=
−⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ =⎣ ⎦ ⎣ ⎦

 

 
0

1

2

0

* ; /
5 / 2!

n

n

d ds nF
n

w s
∞

=
=

⎡ ⎤
⎢ ⎥⎣ ⎦

∑  

1
0

1 ;
0*

F
xs

s×
−

=
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

0
1

2

0

* ; /
5 / 2! (5 / 2, )

n

n

d ds
F

nn n
w∞

=
=

⎡ ⎤
⎢ ⎥+⎣ ⎦

∑
1
0

1 ;
0*

x s
F s×

−

=
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

1
1

2

0

* ;
5 / 2! (5 / 2, )

n

n

w
F

nn n

x∞

=
=

−

+
⎡ ⎤
⎢ ⎥
⎣ ⎦

∑ .                         (43)   

The function ( )1

1F x−  in Eq. (43) is incomplete 
γ -function examined carefully in literature (see, 
for example [17], vol.2, Ch.9).  
  
8. Concluding remarks 
 Operator factorization method is a very young 
method. Being sure of great potentialities of the 
method for physicists, mathematicians and           
chemists doing much calculational work we would 
like to indicate what can be found in the papers 
cited in the reference list and where additional 
information can be found. The foundations of the 
method with appropriate illustrative examples are 
given, in full detail, in  Ref. [20]. An overview of 
the method with detailed discussion of               
linearization Clebsch -Gordan - type theorems and 
addition formulas for hypergeometric   functions 
including a generalization of an  important 
Koornwinder formula is given in Ref. [21]. A new 
theory of linear transformations of multiple hyper-
geometric series and application of the theory to 
computer analysis of Gel’fand  functions are given 
in Refs. [24,25,19]. Universal quadratic transfor-
mations and analytical continuation formulas for 

such series are presented in detail in Refs. [23,26]. 
 A detailed comparison of traditional approaches 
with the factorization method is illustrated in Ref. 
[27] by generalization of a classical relation be-
tween associated Bessel - type series. Computer 
programs have been developed to ensure auto-
matic performance of linear, quadratic and ana-
lytical continuation transformations for multiple 
hypergeometric series [19, 23, 25, 29].  An ele-
mentary introduction to the operator factorization 
method is given in the recent paper [28].  Addi-
tional references can be found in the above papers. 
 The full (Russian) texts of papers [20,23,26] are 
available online on the web site of mechanical and  
mathematical faculty of Moscow State University 
http://mech.math.msu.su~fpm/rus/fpmosn.htm .   
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