Определение размеров и энергии атомов с помощью модели многокомпонентного электронного газа

А.М. Долгоносов

Институт геохимии и аналитической химии им. В.И.Вернадского РАН

Поступило в редакцию

На базе модельных представлений о структуре электронного газа в фазовом пространстве, о коррелированности спинов и взаимном обмене состояний электронов, с применением метода самосогласованного поля Томаса - Ферми выведены выражения, описывающие зависимости полной (ионизационной) энергии атома и атомного радиуса от атомного номера.

Введение

Широко применяющаяся при описании сложных многоэлектронных систем теория функционала плотности [1] базируется на представлениях Томаса и Ферми о связи электронной плотности с электростатическим потенциалом. Эта связь выводится для вырожденного электронного газа и имеет вид степенной зависимости плотности от потенциала с показателем 3/2. Подходы, развивающие теорию Томаса-Ферми, различным образом уточняют выражение для энергии (например, подход Дирака [2] к учету обмена и корреляции в энергии электронного газа или самосогласованная теория Кона-Шема [3], учитывающая обменно-корреляционную поправку для гамильтониана электронного газа) или вводят правила сложения плотностей (приближение локальной плотности), но при этом вид степенной зависимости между плотностью и потенциалом с показателем 3/2сохраняется.

В развиваемом ниже подходе значения показателя указанной связи определяются из модельных представлений о структуре электронного газа и о взаимодействии его частей. В результате создан математический аппарат, позволяющий произвести расчет *ab initio* важнейших характеристик атомов и ионов. Корректность теории контролируется при сравнении ее многочисленных следствий с существующими знаниями об атоме.

Развиваемый подход использует следующие известные положения квантовой механики, ее квазиклассического приближения и статистической физики: фазовое пространство электрона имеет дискретную структуру с объемом ячеек h^3 (*h* — постоянная Планка) [4]; принцип Паули, запрещающий одинаковые состояния электронов, из которого следует, что 2; электронная заселенность ячеек не превышает принцип термодинамического предела: все относительные характеристики газа рассматриваются в предположении большого числа электронов (даже если реально в системе содержится всего несколько электронов). Этот принцип статистической физики обоснован и на случай систем заряженных частиц [5].

Ниже мы будем использовать термины, широко применяющиеся в теории функционала плотности, такие как: корреляция, обмен электронов, дырка — для обозначения отсутствующего электрона, термин «желе» — для обозначения однородного распределения заряда. Смысл некоторых из этих удобных терминов изначально нами несколько смещен: под корреляцией пары электронов принято понимать их взаимовлияние посредством кулоновского взаимодействия, здесь рассматривается корреляция (взаимозависимость) спинов соседних электронов, обмен электронов здесь детерминирован в виде реакций обмена. Однако в результате рассмотрения важнейшего объекта — электронного газа в атоме — мы увидим, что В терминах исчезают. Например, наиболее указанные различия коррелированные (по спину) участки электронного газа, согласно расчетам по модели, являются наиболее плотными, то есть в этих участках электроны испытывают наиболее сильное взаимное отталкивание, что соответствует корреляции в принятом смысле.

Вывод основных уравнений и методы их решения

Структура электронного газа. Распределение электронной плотности может быть двух типов: а) непрерывным (описываемым гладкой функцией) и б) суммой б-функций. Математически – это два альтернативных

представления (то, что сумму б-функций можно «сгладить» путем усреднения по достаточно большому объему, сути не меняет). Физически различия в распределениях плотности обусловлены разными внутренними состояниями электронного газа, характеризующимися различными распределениями спинов электронов: в первом случае у всех заселенных ячеек одинаковый спин, а во втором случае, как и в классической электростатике, спин не играет роли, то есть произволен. На языке волновых функций это означает, что в первом случае волновая функция электронов из соседних ячеек симметрична и обращается в нуль лишь на бесконечности; во волновые функции электронов втором случае не смешиваются, а распределение вероятностей соответствует классической картине газа Возможный математически заряженных частиц. третий случай антисимметричной волновой функции для электронов соседних ячеек с несовпадающими спинами — физически ничтожен вследствие обращения в нуль вероятности сближения (соседства) электронов. Тип а) соответствует состоянию «желе» электронного газа (электроны как бы размазаны по пространству), а тип б) – состоянию «свободные частицы». Итак, электрон с заданными внешними характеристиками (ими являются координаты и импульс ячейки, с соответствующей точностью определяющие энергию расположенного в ней электрона), помещенный в электронный газ, в зависимости от спина может относиться либо к желе (в этом случае р_Л вклад данного электрона в плотность газа), либо к свободным частицам (с плотностью ρ_{P1}). Согласно теореме Кона-Шема [3], электронная плотность однозначно определяет основное невырожденное состояние электронного газа. Следовательно электрон имеет два типа состояний (один относится к желе, другой — к частицам), которые в сумме дают полный набор возможных состояний электрона в заданных условиях. Если сложить электронные плотности, определяющие полный набор состояний, И проинтегрировать сумму по пространству, то получим массу двух электронов: $\int (\rho_{J1} + \rho_{P1}) dr dp = 2m$, где m — масса электрона, drdp — элемент объема фазового пространства. Записанное соотношение обобщим на весь электронный газ, содержащий N электронов:

$$J + P \equiv (Nm)^{-1} \int (\rho_J + \rho_P) dr dp = 2, \qquad (1)$$

где ρ_J — плотность электронного желе, ρ_P — плотность газа свободных частиц, помещенных в те же, что и желе, условия; Ј и Р — соответствующие удельные массы (доли) состояний. Отметим, что для каждого электрона газа реализуется один из вариантов, поэтому масса газа, включающего в себя как области желе, так и свободных частиц, равна Nm. Для компенсации избыточной электронной плотности, соответствующей полной заселенности состояний, понятие дырок ____ формальных объектов вводится С противоположными электронам свойствами (масса, заряд, спин) — для тех состояний, в которых реально электронов нет. Из (1) следует, что число дырок равно числу электронов:

$$D = 1; \ J + P - D = 1 \tag{2}$$

где *D* — доля дырок. Образно говоря, каждому электрону соответствует виртуальная электрон-дырочная пара нереализованного состояния. Этот вывод согласуется с результатом теории функционала плотности [1, с.103]. На дырку как виртуальную частицу нельзя перенести все свойства электрона. В частности, бессмысленно говорить об интерференции волновых функций дырок (пустые ячейки не могут коррелировать). Следовательно, газ дырок не содержит участков желе и все дырки относятся к свободным частицам.

Далее заметим, что числа электронов – свободных частиц и желе, помещенных в одинаковые условия, различаются. Эти различия обусловлены только обменными эффектами. В случае желе вблизи электрона всегда находится сосед, влияющий на знак его спина (ввиду отмеченной выше симметрии волновой функции), а в случае свободной частицы сосед отсутствует. Пренебрегая частотой многочастичных взаимодействий в сравнении с двухчастичными, то есть рассматривая всегда только одного возможного соседа, получим, что, при прочих равных условиях, плотность газа «электронов с соседями» вдвое выше плотности газа «электронов без соседей». Поэтому

$$J = 2P \tag{3}$$

Объединив полученный результат с (1), найдем

$$J = \frac{4}{3}; \ P = \frac{2}{3} \tag{4}$$

Ячейки с одинаковыми спинами, образующие желе, могут быть двух типов: двухэлектронными со спином 0 (назовем такое состояние газа «конденсатом-желе», его долю обозначим как C) и одноэлектронными со спином ¹/₂ («флюид-желе» с долей *F*; знак спина флюида-желе примем положительным). Если в среде двухэлектронных ячеек встречаются ячейки, не совпадающие с ними по спину, т.е. одноэлектронные ячейки, то их электроны следует отнести к некоррелированным, свободным частицам, а такие ячейки будем называть ячейками «свободного конденсата». В зависимости от спина обозначим их доли как R_C^+ , R_C^- (верхний индекс указывает на знак спина). В среде флюида-желе к электронам «свободного флюида» отнесем электроны одноэлектронных ячеек с отрицательным спином (их доля — R_F). Итак, равновесный электронный газ состоит из четырех компонент, находящихся в динамическом равновесии друг с другом; ими являются: конденсат-желе, флюид-желе, свободный конденсат И свободный флюид. Балансовые соотношения между ними вытекают из выражений (1)-(4) (дырки не рассматриваются, так как они служат только для исключения из рассмотрения избыточных состояний газа, не искажая при этом взаимоотношений между реальными электронами):

$$C + F = \frac{4}{3} \tag{a}$$

$$R_F + R_C^- + R_C^+ = \frac{2}{3} \tag{b}$$

$$C/R_C = F/R_F = 2 \tag{c}$$

Учтем также, что в термодинамическом пределе относительный суммарный спин газа электронов в отсутствие магнитного поля равен нулю:

$$F + R_C^+ - R_C^- - R_F = 0 (6)$$

Из (5)-(6) найдем

$$R_C^- = R_F + R_C^+ = \frac{1}{3} \tag{7}$$

Обмен электронами между компонентами электронного газа. Возможны следующие преобразования состояний электронов:

$$r_{C}^{+} \Leftrightarrow r_{\overline{C}}^{-} \qquad (a)$$

$$e_{F} \Leftrightarrow r_{F} - \varepsilon_{1} \qquad (b)$$

$$e_{F} + r_{F} \Leftrightarrow r_{C}^{+} + r_{\overline{C}}^{-} \qquad (c)$$

$$r_{C}^{+} + r_{\overline{C}}^{-} \Leftrightarrow 2e_{C} + \varepsilon_{2} \qquad (d)$$

$$(8)$$

где введены обозначения: *r* — свободные (некоррелированные) электроны, *e* — электроны желе, є — энергия (фотоны); верхние индексы обозначают спин. Для перехода в некоррелированное состояние r_F, электрон флюидажеле e_F затрачивает энергию ε_1 . Аналогичная ситуация характерна для электронов конденсата, что дважды использовано в преобразовании (d). Переход (с) указывает на безразличие системы к обмену пары электронов флюида с противоположными спинами на имеющую ту же природу пару свободных электронов конденсата С противоположными спинами. Симметрия обменов (a) и (c), дает основание для выполнения равенства $\varepsilon_2 = 2\varepsilon_1$. Складывая почленно удвоенное соотношение (b) с (c) и (d), получим суммарное преобразование с сокращением фотонов:

$$3e_F \Leftrightarrow 2e_C + r_F$$
 (9)

Равновесия в реакциях (8*a*), (8*c*) и (9) достигаются в том случае, когда скорости переходов слева направо и справа налево равны, то есть выполняются следующие соотношения:

$$R_C^- = k_a R_C^+$$

$$FR_F = k_c R_C^- R_C^+; \quad k_a, k_c = const$$
(10)

$$F^{3} = k C^{2} R_{F}; \qquad k = const$$
⁽¹¹⁾

Соотношения (3), (5), (7) в сочетании с (10) и (11) дают для *F*≠0:

$$k_a = \frac{x}{x-1}, \quad k_c = \frac{2}{x(x-1)}, \quad k = \frac{2}{(2x-1)^2},$$

где $x = \frac{2}{3F}; x \neq 0, \frac{1}{2}, 1$ (12)

Трехмерная плотность газа *n* равна:

$$n = n_C + n_F + n_{RC} + n_{RF} - n'$$
(13)

где *n_C*, *n_F*, *n_{RC}*, *n_{RF}* — трехмерные плотности компонент газа, *n'* — величина плотности (по модулю) газа дырок. Свяжем с помощью реакций обмена (8) плотности компонент газа друг с другом, учитывая связи (12):

$$n_F^3 = k n_C^2 n_{RF} \qquad (a)$$

$$n_{RC}^2 = \frac{1}{k} n_F n_{RF} \qquad (b) \qquad (14)$$

$$n_F n_{RC} = n_C n_{RF} \qquad (c)$$

Связь плотности газа и электрического потенциала. Определим плотности компонент газа, используя известные выражения для вырожденного электронного газа и для разреженной плазмы. Связь n_C с электростатическим потенциалом φ в электронном газе найдена Томасом и Ферми [1,4]:

$$n_{C} = a_{C} \left(\varphi - \frac{\mu}{e} \right)^{\frac{3}{2}}$$
(a)
$$a_{C} = \frac{8\pi}{3h^{3}} (2me)^{3/2} \beta_{0}$$
(b)

где *m*, *e* — масса и заряд электрона; -μ = const — химический потенциал электронного газа, β₀ — весовой множитель в случае многокомпонентной системы, совпадающий с долей компоненты ввиду нормировки плотности газа Томаса-Ферми на полное число электронов.

Из соотношений (14) следует, что для каждой компоненты связь плотности с потенциалом имеет вид, аналогичный уравнению (15*a*):

$$n_i = a_i \left(\varphi - \frac{\mu}{e} \right)^{b_i}, \ a_i, b_i = const,$$
(16)

где введены индексы компонент: i = 0, 1, 2, 3 — соответственно для конденсата-желе, флюида-желе, свободного конденсата и свободного флюида. Выразим величину a_i , применив скейлинг и соотношения (14*c*) и (15*b*):

$$a_{i} = \frac{2\sqrt{2}}{3\pi^{2}} \cdot \frac{R_{B}^{b_{i}-3}}{e^{b_{i}}} \cdot \beta_{0} \exp\left[\alpha(3-2b_{i})\right];$$

$$(17)$$

где R_B — боровский радиус: $R_B = \hbar^2 / me^2$; α — константа. Значения *b* выражаются с помощью соотношений (14):

$$\begin{cases} 3b_1 = 3 + b_3 \\ 2b_2 = b_1 + b_3 \end{cases} \text{ откуда} \quad b_1 = 1 + \frac{b_3}{3}; \quad b_2 = \frac{1}{2} + \frac{2b_3}{3}. \tag{18}$$

Выражение (17) определяет недостающее условие для электронного баланса: доля *i*-й компоненты электронного газа равна величине

$$\beta_i = \beta_0 \exp[\alpha (3 - 2b_i)] \tag{19}$$

Подставив в это выражение значения *b* из (18) и учитывая соотношения (5) $((5a)+(5b): \sum \beta_i = 2)$, найдем значения β :

$$\beta_{0} = \frac{4}{3} \left(2 - \sqrt{2} \right), \qquad \beta_{1} = \frac{4}{3} \left(\sqrt{2} - 1 \right)$$

$$\beta_{2} = \frac{2}{3} \left(2 - \sqrt{2} \right), \qquad \beta_{3} = \frac{2}{3} \left(\sqrt{2} - 1 \right)$$
(20)

Подстановка доли $F=\beta_1$ флюида-желе в выражения (12) дает константы реакций обмена, в частности, k = 1. Наконец, отсутствие корреляций между заряженными частицами для компоненты «3» — свободного флюида, ее разреженность, дают основание применить для описания ее поля соотношение для классической плазмы низкой плотности [1,5]:

$$n_{RF} = a_{RF} \left(\varphi - \frac{\mu}{e} \right) \tag{21}$$

откуда имеем $b_3 = 1$, а в соответствии с (18) получим и остальные значения b_i , которые приведены в таблице 1.

Итак, разработанная выше модель стационарного электронного газа однозначно (но приближенно: из-за модельных упрощений) задает его компонентный состав. Компонента газа, представляющая собой газ с заданными в фазовом пространстве координатами ячеек, с однородным или случайным распределением спинов, в отсутствие других компонент находится в основном состоянии — в «чистом» состоянии данной компоненты. Чистое состояние газа не противоречит принципам квантовой механики и может существовать самостоятельно. Для него характерна однозначная связь электростатического потенциала с плотностью газа. Однако система электронов, стремясь в низшее по энергии состояние, покидает чистое состояние и переходит в статистически устойчивое состояние динамического равновесия всех компонент газа. Компоненты взаимодействуют путем обмена состояниями электронов. В результате рассмотрения свойств компонент ИХ взаимодействий И получены равновесные доли компонент в газе, форма и параметры связи энергии и плотности для каждой из них.

Метод самосогласованного поля Томаса-Ферми. Для каждого чистого состояния применим метод самосогласованного поля Томаса-Ферми. Подставим определяемую формулой (16) зависимость плотности электронов *n* от величины потенциала ф в уравнение Пуассона:

$$\nabla^2 \varphi = 4\pi e n_i = 4\pi e a_i^0 \left(\varphi - \frac{\mu}{e}\right)^{b_i}$$
(22)

Это уравнение обобщает известное уравнение Томаса — Ферми [1,4], здесь являющееся частным случаем для b=3/2. Очевидно, что для случаев чистых состояний, значения α , β_0 в формуле (17) следует приравнять 0 и 1, соответственно. Величину a_i при $\beta_i = 1$ будем обозначать с верхним индексом "0":

$$a_i^0 = \frac{2\sqrt{2}}{3\pi^2} \cdot \frac{R_B^{b_i - 3}}{e^{b_i}}$$
(23)

Рассмотрим центрально-симметричное решение уравнения (22) для чистого состояния газа электронов в общем случае положительного иона с зарядом $ze \ge 0$. Для новых переменных, введенных согласно:

$$\varphi(r) - \frac{\mu}{e} = \frac{A}{r} \cdot \kappa(Br) = \frac{AB}{x} \cdot \kappa(x), \quad x = Br$$
(24)

получим уравнение

$$x^{b-1} \cdot \kappa''(x) = A_0 \cdot [\kappa(x)]^b \tag{25}$$

которое рассмотрим с граничными условиями

$$\kappa(0) = 1, \kappa(x_0) = 0$$
 (26)

где *r* - расстояние от центра; *A*, *B* - положительные постоянные; штрих обозначает производную по аргументу (в скобках); x_0 — точка, в которой плотность газа становится равной нулю (граница иона), для нейтрального атома $x_0 = \infty$. Как и в теории Томаса - Ферми, для небольших *x* предположим подобие различных систем (атомов), приравняв к единице коэффициент A_0 в уравнении (25):

$$A_0 = 4\pi e a_i^0 A^{b_i - 1} B^{b_i - 3} = 1$$
(27)

Подстановка сюда формулы (23) и заряда ядра в качестве

$$A = eZ_n \tag{28}$$

— ввиду кулоновской асимптотики при $x \rightarrow 0$ (Z_n - атомный номер), дает:

$$B_i = R_B^{-1} \left(\frac{2^{7/2}}{3\pi}\right)^{\frac{1}{3-b_i}} Z_n^{\frac{b_i-1}{3-b_i}}$$
(29)

Хорошей аппроксимацией решения уравнения (25) с граничными условиями (26) является функция (подробный вывод дан в Приложении А):

$$\kappa(x) = \exp\left[-\frac{2}{b(3-b)} \cdot x^{\frac{3-b}{2}}\right] + K \operatorname{sh}\left[\frac{2}{b(3-b)} \cdot x^{\frac{3-b}{2}}\right]$$
(30)

где
$$K = -\exp\left[-\frac{2}{b(3-b)}\cdot x_0^{\frac{3-b}{2}}\right]\cdot \operatorname{csch}\left[\frac{2}{b(3-b)}\cdot x_0^{\frac{3-b}{2}}\right];$$
 которая при $b=1$

является точным решением уравнения (25) с условиями (26). Нижняя граница для области применимости выражения (30) определяется как

$$x >> D(b) = \left(\frac{b-1}{2}\right)^{\frac{2}{3-b}}$$
 (31)

Сфера с радиусом *x*₀ является минимальной из ограничивающих весь заряд *ze* иона. По теореме Гаусса получим:

$$ze = -r_0^2 \cdot \frac{d\varphi(r_0)}{dr}, \text{ и с учетом второго условия в (26) преобразуем к виду:}$$
$$x_0 \kappa'(x_0) = -\frac{z}{Z_n}$$
(32)

Подставив сюда (30), для і -го чистого состояния найдем :

$$\frac{z}{Z_n} = \frac{x_{0(i)}^{g_i}}{b_i g_i \operatorname{sh}\left(\frac{x_{0(i)}^{g_i}}{b_i g_i}\right)},\tag{33}$$

где $g_i = \frac{3-b_i}{2}$, $x_{0(i)} = B_i r_0$, r_0 — радиус иона.

Подставив (28)-(30), (33) в (24), найдем вид потенциала внутри иона:

$$\varphi_{i}(r) = \frac{ez}{r_{0}} + \frac{eZ_{n}}{r} \left\{ \exp\left[-\frac{4 \cdot 2^{3/4} Z_{n}^{(b_{i}-1)/2}}{b_{i}(3-b_{i})\sqrt{3\pi}} \cdot \left(\frac{r}{R_{B}}\right)^{(3-b_{i})/2} \right] - \frac{z}{Z_{n}} \cdot \frac{\exp(-y_{0})}{y_{0}} \operatorname{sh}\left[\frac{4 \cdot 2^{3/4} Z_{n}^{(b_{i}-1)/2}}{b_{i}(3-b_{i})\sqrt{3\pi}} \cdot \left(\frac{r}{R_{B}}\right)^{(3-b_{i})/2} \right] \right\}$$
(34)

где y_0 – положительный корень уравнения $\frac{\operatorname{sh}(y)}{y} = \frac{Z_n}{z}$.

На границе иона потенциал принимает значение

$$\varphi(r_0) = \frac{\mu}{e} = \frac{ez}{r_0} \tag{35}$$

Частным случаем иона при *z* = 0 является нейтральный атом. Для него получим:

$$\mu = 0$$
(35')

$$\kappa(x) = \exp\left[-\frac{2}{b(3-b)} \cdot x^{\frac{3-b}{2}}\right]$$
(30')

Расчет по формуле (30') для самого грубого случая по ограничению (31), D(3/2) = 0.157, в интервале $x \in (0, 1)$ отклоняется примерно на 3% от точной функции $\chi(x)$, полученной путем численного интегрирования [4] (см. Приложение Б). Учет неравенства (31) и подстановка в качестве верхнего предела границы атома $x_{\Gamma} \sim 1$ дают интервал: $D(b) < x < x_{\Gamma}$, соответствующий всей практически важной области внутри атома.

При рассмотрении чистых состояний электронного газа в нейтральном атоме, выражение для электрического потенциала имеет вид:

$$\varphi_i(r) = \frac{eZ_n}{r} \exp\left[-\frac{4 \cdot 2^{3/4} Z_n^{(b_i - 1)/2}}{b_i (3 - b_i) \sqrt{3\pi}} \cdot \left(\frac{r}{R_B}\right)^{(3 - b_i)/2}\right]$$
(34')

Поле электронного газа является линейной комбинацией самосогласованных полей чистых состояний, где коэффициентами служат найденные выше доли компонент:

$$\Psi = \sum_{i} \beta_{i} \Psi_{i} - \Psi', \qquad (36)$$

где ψ , ψ_i — характеристики газа и компонент, соответственно; ψ' — характеристика дырок. Так как дырки не имеют своего чистого состояния, ψ' определяется из характера участия дырок в той или иной величине.

Плотность¹ электронного газа в нейтральном атоме. Проинтегрируем выражение (16) по объему атома, ограниченному сферой радиуса $r = \frac{x}{B}$, подставив (23), (24), (28), (29), (30'), (35'):

¹ Здесь и ниже используются атомные единицы: $e = 1, m = 1, \hbar = 1$

$$N_i(x) = g_i Z_n \left[1 - \frac{1 + x^{g_i}}{g_i} \exp\left(-\frac{x^{g_i}}{g_i}\right) \right];$$
(37)

где $N_i(x)$ — количество электронов внутри сферы согласно приближенному решению (30'). Устремляя границу интегрирования к бесконечности, получим, что доля *i*-й компоненты газа равна g_i , что нарушает нормировку доли компоненты на единицу в рамках метода самосогласованного поля. Поэтому при определении плотности компоненты газа по формуле (16) с учетом приближенного решения (30'), необходимо результат поделить на g_i .

Распределение плотности для многокомпонентного электронного газа в нейтральном атоме имеет вид:

$$n(r) = -n'(r) + \sum_{i} \frac{a_i}{g_i} \left(\frac{Z_n}{r}\right)^{b_i} \exp\left(-\frac{B_i^{g_i}}{g_i}r^{g_i}\right)$$
(38)

Свойства дырок противоположны свойствам тех электронов, которые ими уничтожаются. Распределение дырок *n'* как свободных частиц подобно распределению свободных электронов газа. Однако газ дырок однороден по составу, а газ свободных электронов содержит две компоненты: свободный конденсат и свободный флюид. Следовательно, распределение дырок подобно распределению электронов одной из компонент электронного газа, той компоненты, которая одна представляет свободные частицы внутри атома в пределе при бесконечном числе электронов. При рассмотрении термодинамического предела для отношения слагаемых с индексами «2» и «3» в выражении (38) условием для координаты служит

$$r \sim B_0^{-1} \sim Z_n^{-\frac{1}{3}},$$
 (39)

поскольку такой закон имеет место для линейного масштаба области, содержащей основную массу газа, сосредоточенную в наиболее плотной компоненте — конденсате-желе. Получили, что распределение дырок с точностью до постоянного множителя совпадает с распределением свободных электронов конденсата. Доля всех дырок равна единице, и

поэтому весовой множитель общего члена для свободного конденсата и дырок равен (β_2 -1). Обозначим:

$$\gamma_i = \beta_i - \delta_{i2},\tag{40}$$

где δ_{ij} — символ Кронекера, равный 1 при i = j и 0 при $i \neq j$. Тогда распределение электронной плотности в нейтральном атоме запишется в явном виде:

$$n(r) = \frac{2\sqrt{2}}{3\pi^2} \sum_{i=0}^{3} \frac{\gamma_i}{g_i} \left(\frac{Z_n}{r}\right)^{b_i} \exp\left[-\frac{(B_i r)^{g_i}}{g_i}\right]$$
(41)

$$n(r) = 0.09948 \left(\frac{Z_n}{r}\right)^{\frac{3}{2}} \exp\left(-1.4608 Z_n^{\frac{1}{4}} r^{\frac{3}{4}}\right) + 0.06331 \left(\frac{Z_n}{r}\right)^{\frac{4}{3}} \exp\left(-1.3148 Z_n^{\frac{1}{6}} r^{\frac{5}{6}}\right) - 0.06351 \left(\frac{Z_n}{r}\right)^{\frac{7}{6}} \exp\left(-1.1952 Z_n^{\frac{1}{12}} r^{\frac{11}{12}}\right) + 0.02638 \left(\frac{Z_n}{r}\right) \exp\left(-1.0956 r\right)$$

Итак, анализ распределения электронной плотности в атоме позволяет сделать вывод о том, что дырки расположены в свободном конденсате и его эффективная доля γ_2 — отрицательная величина, равная β_2 - 1. Перепишем соотношение (36) с учетом этого вывода:

$$\Psi = \sum_{i} \gamma_i \Psi_i \tag{42}$$

Потенциал электронного газа. Выразим с помощью (42) и (30') потенциал ф электронного газа нейтрального атома:

$$\varphi(r) = \frac{Z_n}{r} \sum_i \gamma_i \exp\left[-\frac{2^{7/4} \cdot r}{b_i g_i \sqrt{3\pi}} \left(\frac{Z_n}{r}\right)^{1-g_i}\right]$$
(43)

Применение теории для описания атома

Число состояний атомных электронов. Точность формулы (43) и удобство ее применения демонстрирует следующий пример. Известно квазиклассическое выражение для числа ячеек, расположенных в области фазового пространства, доступной для атомных электронов [4, с.210]:

$$N_{cel} = \frac{\sqrt{2}}{3\pi^2} \int (-U)^{3/2} dV \, dV$$

где интегрирование производится по области пространства, в которой потенциальная энергия (величина $U = -\varphi$) отрицательна. Подставим в эту формулу выражение (43) и проинтегрируем по радиусу атома от 0 до ∞ :

$$N_{cel}(Z_n) = \sum_{i} \frac{\gamma_i}{g_i} \cdot \Gamma\left(\frac{3}{2g_i}\right) \cdot \left(\frac{2b_i g_i}{3}\right)^{\frac{3}{2g_i}} \left(\frac{2^{7/2}}{3\pi}\right)^{\frac{3-2b_i}{2(3-b_i)}} Z_n^{\frac{3(2-b_i)}{3-b_i}}$$
(44)

где $\Gamma(x)$ - гамма-функция Эйлера. Полученная величина равна числу состояний, в которых могут находиться электроны. Так как все электроны имеют различные состояния, то величина N_{cel} не меньше числа электронов. С другой стороны, это число не превышает атомного номера инертного газа (Z_{IG}), замыкающего данный период. Развиваемая здесь теория дает непрерывные зависимости, которые не могут следовать за скачками реального числа состояний, поэтому должно быть: $N_{cel} = Z_n$. Число ячеек, рассчитанное по формуле (44), отклоняется от атомного номера в интервале от 1 до 100 не более, чем на 10 % (рис.1).

Рис.1.Зависимость числа ячеек в фазовом пространстве атомного электрона от атомного номера (сплошная линия).

Главное квантовое число и орбитальное квантовое число как функции атомного номера. В квазиклассическом приближении можно определить аналог полного числа (невырожденных) уровней энергии частицы в центрально-симметричном поле нейтрального атома: с помощью понятия ячеек фазового пространства, точнее, их проекций на фазовую плоскость, образованную радиусом и радиальной компонентой импульса. Число уровней энергии определяется как число таких площадок, размещающихся на всей площади области изменения импульса и координаты частицы. При подстановке в соответствующий интеграл предела для импульса финитного движения, найденного с учетом орбитального момента частицы, и после интегрирования по значениям момента получим [4, с.211]:

$$Q(Z_n) = \frac{1}{4} \int_0^\infty \varphi(r) r \, dr$$

Подставим сюда выражение (43):

$$Q(Z_n) = \frac{Z_n^2}{4} \sum_i \frac{\gamma_i}{g_i} \Gamma\left(\frac{1}{g_i}\right) \cdot \left(\frac{\sqrt{3\pi} b_i g_i}{2^{7/4} Z_n}\right)^{\frac{1}{g_i}}$$
(45)

Главное квантовое число (*n*) определяется как целое число, ограничивающее сверху величину $Q(Z_n)$, являющуюся аналогом числа невырожденных уровней в нейтральной системе с Z_n электронами. Интеграл, определяющий $Q(Z_n)$, в квантовой механике является полуцелым числом, поэтому график функции $Q(Z_n)+1/2$ должен пересекать уровни целых чисел, равных главному квантовому числу, в точках, соответствующих заполненным оболочкам:

$$n \approx Q(Z_{IG}) + \frac{1}{2} \tag{46}$$

Отклонение оценки по (46) от реальной величины *n* невелико и лишь для радона достигает 20% (таблица 2).

Испытаем формулу (43) на примере, достаточно чувствительном к точности описания поля атомных электронов: найдем, с какого атомного номера (Z_x) начинают заполняться оболочки с новыми орбитальными

моментами. Вывод, данный в [4, с.321-323] на основании точных вычислений по теории Томаса-Ферми, приводит к несовпадению с опытом порядка 10%.

Для вывода соответствующей зависимости необходимо найти точку касания оси абсцисс графиком эффективного потенциала:

$$U_l(r) = -\varphi(r) + \frac{\left(l + \frac{1}{2}\right)^2}{2r^2} , \qquad (47)$$

(где l — орбитальный момент) то есть рассмотреть условия для одновременного равенства нулю самой функции и ее первой производной. Подставив выражение для потенциала (43) в (47) и рассмотрев уравнения $U_l(r) = U_l'(r) = 0$, получим уравнение для r:

$$\sum_{i} \gamma_i \left(1 - g_i C_i r^{g_i} \right) \cdot \exp\left(-C_i r^{g_i} \right) = 0$$
(48)

где $C_i = \frac{2^{\frac{7}{4}} Z_n^{\frac{b_i - 1}{2}}}{\sqrt{3\pi} \cdot b_i g_i}$. Найденный корень $R(Z_n)$ подставим в уравнение $U_l(r)=0$:

$$2Z_n R \cdot \sum_i \gamma_i \exp\left(-C_i R^{g_i}\right) - \left(l + \frac{1}{2}\right)^2 = 0, \qquad (49)$$

откуда получим функцию $Z_x(l)$. Для l = 1, 2, 3 найдем соответственно:

 $Z_x = 5, 21, 55$ (полученные по уравнению (49) значения округлялись до ближайшего большего целого), что совпадает с истинными значениями, за исключением последнего числа (должно быть 58).

Граница атома и иона. Размер атома есть максимальная величина радиуса траектории атомного электрона. Исходим из квазиклассического соотношения для числа состояний [4]:

$$\frac{1}{2\pi} \oint p(x) dx = n + \frac{1}{2} \le \frac{1}{2\pi} p_{\max} \left(r_{\max} + r_{\min} \right)$$
(50)

где p_{max} — максимальная величина импульса, r_{max} и r_{min} — максимальное и минимальное расстояния электрона от центра атома; интеграл берется по траектории атомного электрона и учитывается то, что ядро атома лежит внутри области, ограниченной траекторией электрона. Величина r_{min} — это

де-бройлевская длина волны электрона, минимальная при максимальном импульсе

$$r_{\min} = \frac{2\pi}{p_{\max}} \tag{51}$$

Для размера атома r_{at} (отнесем его к нижней границе области r_{max}) получим:

$$r_{\max} \ge \frac{2\pi}{p_{\max}} \left(n - \frac{1}{2} \right) = r_{\min} \left(n - \frac{1}{2} \right) \equiv r_{at}$$
(52)

Величина минимального радиуса ограничивает область электронного газа, не содержащую частиц, так как в противном случае частица внутри этой области должна была бы иметь импульс, превышающий максимально допустимый для финитного движения электрона в атоме. Это, однако, не означает, что электронная плотность в этой области равна нулю. При построении модели было показано, что наличие частиц означает наличие дырок, значит при рассмотрении электронного баланса в этой области следует исключить дырки. Электронный газ без дырок содержит, по меньшей мере, одну компоненту — конденсат-желе. Доля электронного газа без дырок может изменяться в интервале между долей конденсата-желе (β_0) и 1. Если бы верхняя граница этого интервала превышала 1, то для соблюдения электронного баланса в такой газ следовало бы добавить дырки. Размер области, не содержащей частиц, лежит в интервале, границы которого могут быть найдены по формуле (37) с учетом нормировки при решении следующих уравнений:

$$\sum_{i=0}^{3} \frac{\beta_{i}}{g_{i}} \cdot \left(1 + r^{g_{i}} \sqrt{\frac{8\sqrt{2}}{3\pi}} Z_{n}^{b_{i}-1}\right) \cdot \exp\left(-\frac{r^{g_{i}}}{g_{i}} \sqrt{\frac{8\sqrt{2}}{3\pi}} \cdot Z_{n}^{b_{i}-1}\right) = \begin{cases} 2 - \beta_{0} \ ; \ r = r_{0} \\ 1 \ ; \ r = r_{1} \end{cases}$$
(53)

Величина *r*_{min} определяется как величина, лежащая в интервале между корнями уравнений (53):

$$r_0 \le r_{\min} \le r_1$$

и подставляется в формулу (52). Большая часть экспериментальных значений атомных радиусов [6], представленных на рис. 2, укладывается внутрь теоретической области, ограниченной сплошными линиями.

Рис.2. Сравнение расчетных и экспериментальных данных по атомным радиусам. Сплошными линиями обозначены теоретические границы для ковалентных радиусов, штрих-пунктирными линиями — графики теоретической зависимости для ионных радиусов, кружками — экспериментальные данные по атомным радиусам [6].

На рис.2 хорошо видно, что радиусы металлов, входящих в химические соединения лишь в виде катионов (элементы первых трех групп в каждом периоде таблицы Менделеева), не попадают в интервалы, характерные для атомных радиусов остальных элементов. Определим величины ионных

радиусов с помощью выведенных выше выражений для иона. Сложив правые части выражения (33), записанного для разных компонент электронного газа с учетом их веса (β_i), получим удвоенное отношение зарядов иона и ядра:

$$\sum_{i} \left(\beta_{i} r^{g_{i}} / b_{i} g_{i} \right) \sqrt{\frac{8\sqrt{2}}{3\pi} Z_{n}^{b_{i}-1}} \operatorname{csch}\left[\left(r^{g_{i}} / b_{i} g_{i} \right) \sqrt{\frac{8\sqrt{2}}{3\pi} Z_{n}^{b_{i}-1}} \right] = 2z / Z_{n}$$
(54)

Решением уравнения (54) является функция $r(Z_n, z)$, график которой дан на рис.2 изолиниями *z=const*. Максимальные расхождения теоретических и экспериментальных значений не превышают 10 %, что свидетельствует об удовлетворительной точности расчета по формулам (52)-(54).

Энергия атома. Полученные выражения для потенциалов $\phi_i(r)$ и радиусов r_{at} используем для вычисления значений энергии ионизации атома, а также, полной энергии электронов нейтрального атома.

Энергию ионизации атома получим, взяв интеграл от химического потенциала по заряду иона (см.(35)), куда подставим величины из (52)-(54):

$$\Delta E_{z}(Z_{n}) = \int_{0}^{z} \frac{q \, dq}{r_{at}(Z_{n},q)} \approx \frac{z^{2}}{r_{at}(Z_{n}) + r(Z_{n},z)} \approx \frac{z^{2}}{1.31(n-1/2)Z_{n}^{-1/5} + 1.84(Z_{n}/z)^{1/4}}$$
(55)

(Аппроксимации радиусов основаны на том, что граница нейтрального атома проходит по флюиду-желе, а иона — по свободному флюиду). Погрешности при определении таким способом значений энергии ионизации составляют десятки процентов и приводят к значительной ошибке при их суммировании. В этой связи найдем полную энергию электронного газа независимым способом. Потенциальная энергия каждой компоненты газа в чистом состоянии выражается интегралом²:

² Здесь вычисляются так называемые одноэлектронные энергии [1], которые для газа заряженных частиц в b_i раз меньше истинных значений, учитывающих межэлектронные взаимодействия по одному разу. Однако в нашей модели это не приводит к заметной ошибке, поскольку взаимодействия кулоновского типа могут быть лишь в свободном конденсате и свободном флюиде, для которых поправочные коэффициенты близки к 1 и для простоты здесь опущены.

$$U_{i} = -\int_{0}^{\infty} \varphi_{i}(r) n_{i}(r) dV(r) = -\frac{4\pi a_{i}^{0}}{g_{i}} \int_{0}^{\infty} [\varphi_{i}(r)]^{1+b_{i}} r^{2} dr$$
(56)

После несложных преобразований получим:

$$U_{i} = -\frac{2\Gamma\left(\frac{7-3b_{i}}{3-b_{i}}\right)}{\left(2-b_{i}\right)\left(3-b_{i}\right)} \cdot \left(\frac{2^{7/2}}{3\pi}\right)^{\frac{1}{3-b_{i}}} \left[\frac{b_{i}\left(3-b_{i}\right)}{2(b_{i}+1)}\right]^{\frac{4-2b_{i}}{3-b_{i}}} Z_{n}^{\frac{5-b_{i}}{3-b_{i}}}$$
(57)

Определение потенциальной энергии нейтрального атома (с номером Z_n) проведем по следующей схеме. Найдем суммарную потенциальную энергию всех состояний газа. Она соответствует гипотетическому газу с удвоенным числом электронов. Атомное ядро в этой (нейтральной) системе имеет удвоенный заряд. В образовании общей потенциальной энергии такого газа энергии его компонент (57) складываются со своими весами β_i . Для получения искомой величины из этой суммы необходимо вычесть член, соответствующий Z_n дыркам — U_2 , и энергию экранированного ядра с зарядом Z_n , равную U_3 . Таким образом, в выражении для потенциальной энергии атома члены свободного конденсата и свободного флюида имеют отрицательные веса, равные β_i - 1.

С учетом теоремы вириала, согласно которой полная энергия электронного газа равна половине его потенциальной энергии, найдем полную энергию атомных электронов:

$$E(Z_n) = \frac{1}{2} \sum_{i} (\gamma_i - \delta_{i3}) \cdot U_i =$$

$$= -\frac{1}{2} Z_n^2 \left(1.2472 \cdot Z_n^{\frac{1}{3}} + 0.5707 \cdot Z_n^{\frac{1}{5}} - 0.4477 \cdot Z_n^{\frac{1}{11}} - 0.3965 \right)$$
(58)

Результаты расчета по формуле (58) сопоставлены с экспериментальными данными [7] в таблице 3. В литературе для аппроксимации зависимости $E(Z_n)$ предложена полуэмпирическая формула Скотта [8], дающая примерно такую же ошибку.

В заключение отметим, что предложенный неэмпирический подход к описанию электронного газа имеет важные приложения как при

рассмотрении характеристик атомов, так и при описании межатомного и вандер-ваальсовского взаимодействий. Последние определяются характером дальней асимптотики потенциалов чистых состояний, имеющей вид

 $\varphi_i \sim r^{-\frac{2}{b_i-1}}$, где $i = 0, 1, 2; 2/(b_i-1) = 4, 6, 12$ (для чистого состояния "3", с b=1, потенциал имеет вид (34')). Эти вопросы будут рассмотрены в последующих работах.

ПРИЛОЖЕНИЕ

<u>А. Вывод приближенного решения уравнения (25)</u>: $x^{b-1} \cdot \kappa''(x) = A_0 \cdot [\kappa(x)]^b$ <u>с граничными условиями (26)</u>: $\kappa(0) = 1, \kappa(x_0) = 0$.

Предположим, что функция $\kappa(x)$ в некотором интервале изменения *х* имеет следующее свойство:

$$\kappa(ax) = [\kappa(x)]^b, \ a = \text{const}$$
 (II1)

Функция, удовлетворяющая (П1), имеет вид:

$$\kappa(x) = \exp\left(-kx^g\right), \quad k = -\ln\kappa(1), \quad g = \frac{\ln b}{\ln a} \tag{12}$$

Подставим (П1) в (25), заменив аргумент:

$$z = ax;$$
 $\kappa''(x) = a^2 \kappa''(z);$ тогда получим
 $z^{b-1} \cdot \kappa''(z) = a^{b-3} \cdot \kappa(z)$ (ПЗ)

Пусть для некоторой переменной y = y(z), существует функция

$$\xi(y) = \kappa(z), \tag{\Pi4}$$

тогда

$$\kappa''(z) = y''(z)\xi'(y) + \xi''(y)[y'(z)]^2 \tag{H5}$$

Рассмотрим случай, когда второе слагаемое в (П5) гораздо больше первого:

$$|y''(z) \cdot \xi'(y)| \ll |\xi''(y)| [y'(z)]^2$$
 (П6)

Подставив $\kappa''(z) = \xi''(y) [y'(z)]^2$, получим:

$$z^{b-1}\xi''(y)[y'(z)]^2 = a^{b-3} \cdot \xi(y),$$

и разделим переменные:

$$\frac{\xi''(y)}{\xi(y)} = \frac{a^{b-3}}{z^{b-1} [y'(z)]^2} = L^2 = const$$
(II7)

Решение уравнений (П7) имеет вид:

$$\xi(y) = A_1 \exp(Ly) + A_2 \exp(-Ly), \quad A_1, A_2 = const$$
(II8)
$$y = \frac{2L^{-1}}{3-b} \cdot \left(\frac{z}{a}\right)^{(3-b)/2}$$
(II9)
$$y(z=0) = 0 \Rightarrow A_1 + A_2 = \xi(0) = \kappa(0) = 1$$

Подставив (П9) и (П4) в (П8), применив формулу (П1), связь z = ax, второе условие (26), найдем:

$$\kappa(x) = \exp\left[-\frac{2}{b(3-b)} \cdot x^{\frac{3-b}{2}}\right] + K \operatorname{sh}\left[\frac{2}{b(3-b)} \cdot x^{\frac{3-b}{2}}\right]$$
(П10)
где $K = 2A_1 = -\exp\left[-\frac{2}{b(3-b)} \cdot x_0^{\frac{3-b}{2}}\right] \cdot \operatorname{csch}\left[\frac{2}{b(3-b)} \cdot x_0^{\frac{3-b}{2}}\right];$

Выражение (П10) в точности удовлетворяет уравнению (25) при *b*=1. Условие (П6) дает нижнюю границу для области применимости выражения (П10):

$$x >> D(b) = \left(\frac{b-1}{2}\right)^{\frac{2}{3-b}}$$
(II11)

Частным случаем иона при *x*₀=∞ является нейтральный атом. Для него получим:

$$\kappa(x) = \exp\left[-\frac{2}{b(3-b)} \cdot x^{\frac{3-b}{2}}\right]$$
(II12)

Б. Сравнение расчета по формуле (П12) (*b*=3/2) с численным решением уравнения Томаса-Ферми для нейтрального атома:

x	0	0.02	0.04	0.08	0.2	0.4	0.6	1.0	2.0
к(<i>x</i>) , (П12)	1	0.954	0.924	0.875	0.766	0.639	0.546	0.411	0.224
χ(x), [4]	1	0.972	0.947	0.902	0.793	0.660	0.561	0.424	0.243
Откл.,%	0	-1.85	-2.43	-2.99	-3.40	-3.18	-2.67	-3.07	-7.82

Список литературы

- 1. Теория неоднородного электронного газа /Под ред. С.С.Лундквиста, Н.Марча, М., Мир, 1987, 400 с.
- 2. Dirac P.A.M. Proc. Camb. Phil. Soc., 26 (1930) 376.
- 3. Kohn W., Sham L.J. Phys. Rev., A140 (1965) 1133.
- 4. Ландау Л.Д., Лифшиц Е.М., Теоретическая физика. Т.3. Квантовая механика. М., Наука, 1974, 752 с.
- 5. Балеску Р., Равновесная и неравновесная статистическая механика.- М., Мир, 1978, Т.1, 405 с.
- 6. CRC Handbook of Chemistry and Physics, 72nd ed. / Ed. by D.R.Lide.-Chemical Rubber Co. Press, 1991.
- Физические величины: Справочник. / А. П. Бабичев, Н. А. Бабушкина, А.М.Братковский и др.; Под ред. И.С.Григорьева, Е.З.Мейлихова.- М.; Энергоатомиздат, 1991.- 1232 с.
- 8. Scott J.M.C. Phil. Mag., 43 (1952) 859.

Название	Индекс	Доля	Показатель
компоненты	i	$\beta_i = \frac{2\left(\sqrt{2}-1\right)}{3} \cdot 2^{\frac{3-i}{2}}$	$b_i = \frac{3}{2} - \frac{i}{6}$
конденсат - желе	0	0.78105	3/2
флюид - желе	1	0.55228	4/3
свободный конденсат	2	0.39052=1/3+0.05719	7/6
свободный флюид	3	0.27614	1

Таблица 1. Характеристики компонент электронного газа

Таблица 2. Оценка главного квантового числа

n	1	2	3	4	5	6
Q + 0.5	0.987	1.97	2.71	4.09	5.29	7.2
Откл.,%	-1.3	-1.5	-9.7	2.2	5.8	20
Z_{IG}	2	10	18	36	54	86
<i>Z_{IG}</i> , расч.	2	10	21	35	49	65
ΔZ_{IG}	0	0	3	-1	-5	-21

Номер элемента	Справ. данные [7],	Расчет по (58)	Относит.
Z_n	$-E(Z_n)/\frac{e^2}{R_B}$	$-E(Z_n)/\frac{e^2}{R_B}$	ошибка, %
1	0.50	0.487	-2.6
2	2.905	2.707	-6.8
3	7.48	7.283	-2.7
4	14.66	14.628	-0.2
5	24.67	25.066	1.6
6	37.87	38.871	2.6
7	54.64	56.280	3.0
8	75.15	77.504	3.1
9	99.7	102.74	3.0
10	129.1	132.15	2.4
11	162.50	165.915	2.1
12	200.40	204.177	1.9
13	243.14	247.08	1.6
14	290.02	294.76	1.6
15	342.10	347.35	1.6
16	399.20	404.97	1.4
17	461.60	467.74	1.3
18	529.30	535.75	1.2
19	602.20	609.15	1.2
20	680.44	688.01	1.1
21	764.20	772.45	1.1
22	853.73	862.54	1.0
23	949.29	958.38	0.96
24	1049.1	1060	1.0
25	1159.5	1168	0.73
26	1274	1281	0.55
27	1393	1401	0.57
28	1521	1527	0.39
29	1652	1659	0.42
30	1793	1798	0.28
31	1942	1943	0.00
32	2096	2095	0.00
33	2257	2253	-0.18
34	2425	2417	-0.33
35	2601	2589	-0.46
36	2783	2767	-0.57

Таблица 3. Сравнение полной энергии атомов, рассчитанной по

формуле (58), с экспериментальными значениями [7]