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Abstract

A model for multispecies ion-exchange kinetics based on the Nernst-Planck equation is suggested. It is analyzed
in comparison with the “locally-determinate” model described by Hwang and Helfferich [1]. The model makes
possible simple computation. The conditions for the occurrence of unusual kinetic curves with a maximum are
clarified. The proposed model is developed for different types of kinetic problems and verified by the experimental

investigation of a kinetics in ternary systems.
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1. Introduction

An interest to multispecies ion-exchange ki-
netics is dictated by the following reasons.
On. the one hand, a behaviour of complicated
ion-exchange systems cannot be adequately de-
scribed by the models for two-ion systems. On
the other hand, special features of the kinetics
are seldom if ever used in actual ion-exchange
practice and technology to create processes not
only with greater intensity but with the compo-
nents distribution between phases, more advan-
tageous than equilibrium one.

Nevertheless, the multispecies ion-exchange
kinetics is not sufficiently investigated yet be-
cause of difficulties in its modelling and ex-
perimental testing [1, 2]. The most rigorous
model for intraparticle-diffusion controlled ion
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exchange, based on the Nernst—Planck equation
was developed by Y.-L. Hwang and EG. Helf-
ferich [1]. The more readily solved model to
calculate the multispecies ion-exchange Kinetics
is suggested in the present study.

2. Premises and physical model

For the kinetic model to be set up one has to
consider physical laws governing the movement
and distribution of ions in the ion-exchanger
phase.

2.1. Ion fluxes

The ion fluxes are operated by the factors:
diffusion and electric field arising from the dif-
ferences of ions mobilities. The flux for ions i
can be described as follows:

J; = D;grada; +v; q ®
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In accordance with the Einstein law the velocity
of drift of the ions in the electric field can be
expressed as follows:

©

vi =biz; F-E = —R—T'Dizi gradg (2

Equations 1 and 2 give the known form of the
Nernst—Planck equation:

F
Ji=-D; [gradai + ﬁl;’ai grad¢] ©)

2.2. Material balances in the exchanger phase (ion
exchange without chemical reactions)

The total quantity of given type substances is
constant:

ai, + divJ; = 0 (4)

2.3. Electroneutrality requirement to the
intraparticle diffusion process

The sum of charges of counterions being un-
der the thermodynamic equilibrium is equal to
the sum of ion-exchanger fixed charges (func-
tional groups charges):

Z zia; & Z Zidg; = ap = const &)
(see Appendix, 1)

The left Eq. 5 is an approximation. The time
it takes to establish any local equilibrium is by
orders of magnitude less than the time for global
thermodynamic equilibrium in the system (ion-
exchange grain). Therefore, in the context of
description of macroscopic process, Eq. 5 is close
to the exact one.

At the same time it is imperfect compensation
of the charges that gives rise to radial dipole
moments in the grain and causes the centrally
symmetric electric field, which tends to elimi-
nate these dipoles. This statement is the main
distinctive feature of the model proposed be-
low from the “locally-determinate” model [1, 2]
(LDM) in which the arising electric field is con-
sidered at the micro-level. The use of LDM leads
to challenging mathematical problems related to

integration of nonlinear partial differential equa-
tions of second order. Our hypothesis for the
macroscopic character of the electric field in an
ion-exchange grain makes possible to the sim-
plify mathematical formulation.

3. Macroscopic model of ion-exchange kinetics

Let us define the average concentration of
ions i in the solid phase as follows: v

1
Ei=—-/a,-dV (6)
Vo

0

According to the Gauss theorem and to Egs. 5
and 6:

6
Friaiarh Join) M

Mass flux through this surface determined by Eq.
3is:

F
[grad odi + ﬁziao,- grad j¢ ]

Equations 3, 5 and 7 form the base for LDM,
which was numerically solved in the papers [1, 2].
Mathematical expression for ionic fluxes without
space derivatives can be formulated on the basis
of the hypothesis mentioned above (electric and
concentration fields are essentially macroscopic)
and the fact represented in Eq. 7 (the function
a;(t) is determined by the space derivatives at
points of the ion-exchanger surface). In accor-
dance with the hypothesis, a linear combination
of concentration and potential gradients can be
presented as functions of @; and ¢. Assume, that
such a function is linear and the following equality
for Jy; works well:

N

F
grad ja; + ( ) dop =
2an _ _ (oyF N
- [(GOi —a;) + za; (Flf) (0 — ‘P)]
(o, ¢y = const) (8)
The magnitudes ap; and ¢, are taken for the

grain boundary in LDM representation only. At
the same time, these parameters characterize the
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ion-exchange equilibrium for the whole grain in
the framework of the macroscopic model (MM).
For the intraparticle diffusion kinetics these state-
ments are not in contradiction. Equations 3 and 8
can be rearranged as follows (see Appendix, 2):

da; 12«

dt d?

Dy lag a1 Zi ZBiZi(ao;' - a;)
' Z D,iz,-z‘d,-
' )

The constant @ = 72/3 can be determined from
the asymptotics of LDM and MM for spherical
grain att — o0.

On the assumption that ¢p — ¢ = 0 in ex-
pression 8, the well-known E. Glueckauf kinetics
approximation [3] can be derived. A principal
limitation of the Glueckauf approach is that the
parameters D; are time dependent. In our model
the diffusivities D; are constant parameters, and
the potential ¢ is time dependent.

4. Types of kinetic problems

(1) The most simple formulation of kinetic
problem was given earlier [1]; it can be repre-
sented in the following manner:

- given: z;, D;, api/ap and a;i—=0)/ao (i=1,
N )

- required: interrelation between a;/ap and
T = 4D,t/d*.

(2) The kinetic problem with the implicitly
given parameters is more challenging, and this
one frequently occurs in practice:

- given: the total ion-exchange capacity of the
sorbent, ap (meq/g); the average diameter of the
grains, d (cm); porosity in the bed of the swelled
exchanger, ¢; the volume of the bed (cm3) ac-
counted for 1 g of dried mass, w; the charges
of functional groups and the ion-exchange equi-
librium constants of different pairs of ions, K;j;
the charges of ions, z;; their concentration in
the external solution ¢; (mmol/cm?); initial ions
content of the sorbent, a;;—o);

— required: time dependence of z;a;.

5. Experimental

The following ion-exchange systems were
used in this study: strong acidic cation-ex-
changer KU-2-8 “Khimreactiv”, Russia (styrene-
divinylbenzene sulphonated resin which is anal-
ogous to the Dowex-50-8), in Na*-form and
solutions of mixtures of potassium chloride
and strontium chloride with the concentra-
tions 0.075-0.13 and 0.0024-0.089 mol/l, respec-
tively. The root-mean-square grains diameter
of specially selected fraction of the resin was
0.064 + 0.013 cm, the solutions used were pre-
pared from reagents of Pure grade qualification.

The analyses of ion composition of the so-
lutions were performed by the methods: atomic
absorption in the flame of acetylene —air atomic
emission in the flame of propane —air.

The experimental procedure, well-known as
“shallow-bed” method [5] was used in the fol-
lowing manner: for a fixed time the working
solutions were pumped with large enough flow
rate (around 25 cm®/s) through the small por-
tion of the cationic resin (0.1-0.2 g) placed in
an experimental cell with the bed in thickness
of one grain. Thereafter the process was rapidly
interrupted by special three-channel cock and
flushed out by distillated water. The contact time
in each kinetic experiment was controlled with
an error not greater than 0.5 s. After prior air
drying and weighting the loaded probes of the
cation-exchanger were treated by 0.01 mmol/cm?
solution of barium chloride at static conditions
by the small successive portions of this solution
up to the complete desorption of potassium and
strontium. After that treatment the ions con-
centrations in the total collected volume of the
solutions were analyzed and used to calculate the
sorbents phases compositions at the fixed times
of kinetic process and to plot the kinetic curves,
as shown in Fig. 2.

6. Results and discussion

The example of Problem 1:
— in the paper [1] a numerical solution on
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the basis of LDM was presented for n = 3,
ase=0) = ao; D1:Dy: D3 =5:02:1; 7y =2, =
23, a()]/a() = 06, aoz/ao = 0.4. We considered
this problem from standpoint of MM. A compar-
ison between results of both models presented
in Fig. 1 demonstrates the acceptability of the
premises made in the macroscopic model. An
unusual kinetic effect is markedly seen in the
curve for ions “1”: a maximum with the coordi-
nates (0.26;0.7). The investigation of this effect
by MM resulted in the data presented in Table
1. Some conclusions concerning the maximum
arising in kinetic curves can be made: a) a max-
imum (an overshoot of sorption uptake in com-
parison with an equilibrium magnitude) arises
in the kinetic curve for the most mobile ion of
competing ions; this conclusion is similar to that
in the paper [1]; b) the diffusivity of a compo-
nent being desorbed has to be greater than the
diffusivity of at least one of competing compo-
nents; c) the larger the differences between the

Table 1
Overshoots on uptake-versus-time curves for the most mobile
ion

Diftusivities ratio Equilibrium Relative
uptake Q3 overshoot AQ,, /01
Dy/Ds (Dy/D3 = D3/ D)
1 any 0
2 0.05 03
2 0.1 0.3
2 0.2 0.21
2 03 0.16
2 04 0.13
2 0.5 0.08
2 0.6 0.06
2 0.8 0.04
8 0.1 2.30
8 04 0.75
8 0.6 0.35
Dy, Dy (D1/Ds3 # D3/D,, D3 =1)
Di>1,D=1 any u
Di=D; <1 any 0
Dy=1,D,=05 0.1 0.11
Dy=1,D,=05 0.2 0.10
D;1=1,D,=05 0.5 0.04
Dy =04,D;=0.1 0.2 0.86
D1 =04,D;=01 0.5 0.37
Dy =04,D,=0.1 08 0.11

a,meql/g

T = (4:2Dy/d?)=

Fig. 1. Kinetic curves of most mobil competing ion (I),
of another competing ion (2) and the curve of ion be-
ing desorbed (3). Ternary ion exchange simulated by the
models: LDM (dotted lines) and MM (solid lines). Condi-
tions: asg=0) = ao; D1:D2: D3 = 5:02:1; 71 = zp = z3;
ap1/ag = 0.6, apy /ap = 0.4.

diffusivities of competing components and be-
tween the diffusivities of the component being
desorbed and the slowest competing component,
the larger is the effect; d) the smaller the equi-
librium concentration of the most mobile com-
ponent in the ion-exchanger, the larger is the
effect.

The examples of Problem 2 are given in Sec-
tion 5: )
— experimental kinetic curves for K* in Fig. 2
show the maximums according to the theoreti-
cal predictions for the multi-ions systems. The
calculated kinetic curves, as Fig. 2 shows, agree
satisfactorily with the experimental ones. The
calculations were performed by Eqs. A7-A9 with
the parameters for special conditions of each ex-
periment: characteristics and initial ions content
of the sorbents, some physical characteristics and
composition of the external solutions. Equation
A9 also involves selectivity coefficients of ion ex-
change K;; and equivalent conductivity of com-
ponent in solutions A;. In actual conditions one
should take into account that these parameters
are the functions of concentrations c;. These
data are presented in Table 2.

The empirical expression of the Onsager law

type:
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Fig. 2. Experimental points and calculated kinetic curves of K* (1), Sr®* (2) and Na* (3) in ternary systems (see Table 2): (a)

experiment No. 1; (b) experiment No. 2; (c) experiment No. 3.

A; = Ao — B (Z chi)' (10) calculate the actual values A; of the internal so-
4 lutions. Under these values of parameters, the
with B = 54.4, r = 0.15 and Ap; — the tab- experimental and calculated data are most close.

ulated equivalent conductivity — was used to
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Table 2
Parameters of the experimental systems used for calculations
Experiment  Ksik Ion ¢ Zi0i N - AP D; x 106
no. (v/g/cm3) (mmol/cm?) (megq/g) (cm?/Ohm/eq) (cm?/Ohm/eq) (cm?/s)
0.51 K 0.13 0.703 74 25.2 1.70
St 0.089 2.737 56 74 0.255
Na 0 0 52 3.0 0.808
68 K 0.075 1.542 74 36.4 0.793
Sr 0.0024 1.898 56 18.7 0.160
Na 0 0 52 14.2 3.85
62 K 0.103 1.231 74 33.4 1.18
Sr 0.01 2.209 56 15.6 0.239
Na 0 0 52 11.2 3.02
Appendix porosity in the bed of the swelled ex-
changer;
1. List of svmbols w volume of the bed (¢cm?) accounted for
1 g of dried mass;
Ji flux for ions i (i — counterion); Ki; selectivity coefficients for different
D; individual diffusivity of ions i in the pairs of ions;
exchanger (cm®/s); Ci concentration of ith ions in the exter-
a concentration of ith ions in the ex- nal solution (mmol/cm?);
changer (mmol/cm’); Wi¢=0) initial ions content of the sorbent;
velocity of drift of ions in the electric T = aoi/c
field (cm/s); actual distribution coefficient for com-
b; ions mobility; ponent i;
module of electric charge (in electron Tt = Qei/Cei
charges); valid dimensionless distribution coeffi-
the Faraday and gas constants, respec- cient for component i;
tively; “g” index is assigned to locally equilibrium
T temperature (K); magnitudes;
electric intensity and potential, respec- W4 (Wp) probability of fixed position (move-
tively; ment) of ion;
time (s); A; equivalent conductivity of ith ions
X partial differentiation on time; (cm?/Ohm/eq).
ao; equilibrium concentration of ions i in
the exchanger; A2. Mathematical part
agp equivalent concentration of fixed
groups; 1. When changes of electric field appearing in
0 d volume (cm®) and diameter (cm) of the process of electric charges motion are very
exchanger grain, respectively; small, the approximate expression takes place:
n normal to the spherical surface of the
. 1% — & () Al
orain; ZJ;Z; ZJfZ_f (A1)
0 index denoting the values taken at the where J; and zy are the fluxes and charges of
surface; co-ions, respectively. The Donnann effect makes
o, o constants; difficult for free co-ions to transfer into the sor-
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bent phase. Hence, the co-ions “f” in the sor-
bent are really the fixed ions of functional groups
only (with Dy = 0). If so, Eq. 3 gives J; = 0, and
then

> Jizi~0 (A2)
This equation and Eq. 4 lead to Eq. 5.

2. Equations 8 and 5 lead to the equality:
grad ;¢ Z Z?ag = gradg Z z2a; (A3)

I —— l-:'r'rr'|.l'r[|r..”|;.:| ]

r
4

A physical meaning of Eq. A3 is in the statement:
the average electrostatic force (along the radius
of a grain) acting on the ionic dipoles is equal
to that on the grain boundary. So, the kinetics
equation can be formulated as follows:

da; 12«

= x

dt d*

F
x D; l:a()i —a; (1 - Zi%ﬁ(‘ﬂo - ‘P))]
(A4)

where the expression o - (¢y — ¢) is derived from
the following condition, which is true with high
accuracy (as Eq. 5):

i i - 0 AS
1t ( )
So:

o (po— @) =
2RT “ =

~=— 2 Dizi(aw —@) } | Diza; (A6)

3. The calculations of the parameters of this

kinetic problem were made in the following man-

ner: equilibrium parameters (ag;) were calcu-
lated in accordance with the mass-action law:

Y/ =Ky -1, (A7)

where I'; = aq;/c; is the actual distribution co-
efficient for component i. This parameter is re-
lated to the valid dimensionless distribution co-

efficient I';t in the form:

Popm R
T wa-e) v

The parameter I';r forms a part of the expres-
sion for the intraparticle diffusivity of ions i

n _ RTA:/(F*z)
- I

The deduction of this equation can be clari-
fied by the model based on the assumption that
ions only move in the solution impregnating the
ion-exchange particle and they are fully motion-
less at bonded positions.

Interferences to ions motion by the exchanger
matrix are neglected in this mode! (to sufficient
accuracy this works well for polymeric ion ex-
changers [4]). Let us consider the following main
reasons to deduce Eq. A9:

(a) The motion cycle is made up of two parts,
A and B: the total time for ions translation from
one point of the particle to another constitutes
the residence time at fixed positions, A (fixed po-
sitions time), and the time of ions movement, B.

(b) Ratio between these times for a singly
charged ion is equal to the ratio of concentra-
tions of these ions in the associated phases; for
linear isotherms this ratio is the valid distribution
coefficient (having regard to phase volumes) I';t,
and this gives expression A9 for D; at z; = 1.

(c) The concept of probability of location in
one position or another is more suitable for mul-
tiply charged ions. The ratio A/B is equal to
the ratio of probabilities W4/ Wp (in this case
W, is probability for an ion to have at least one
bond with matrix), but the ratio ae;/ce; = I'it
is equal to that between probabilities for ions
to have bonds of one configuration or another,
Wea/Wep (index “e” is assigned to locally equi-
librium magnitudes). For example, W, for bi-
nary charged ions is probability to be concur-
rently bonded with two functional groups. The
magnitude of this probability is equal to the
square of probability to be bonded with at least
one functional group: Wea = W2 (Wep = W3).
Similarly, for z: Wes = W3.

(A9)
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