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Alaskan-type platinum-bearing plutons and potassium-enriched

mafic to ultramafic volcanic rocks are temporally and spatially

associated within the Late Cretaceous–Paleocene Achaivayam–

Valaginskii intra-oceanic palaeo-arc system, allochthonously present

in the Koryak Highland and Kamchatka Peninsula (Far East

Russia). The compositions of the parental magmas to the Alaskan-

type complexes are estimated using the Galmoenan plutonic complex

as an example. This complex, composed of dunites, pyroxenites and

minor gabbros, is the largest (�20 km3) in the system and the best

studied owing to associated platinum placer deposits. The composi-

tions of the principal mineral phases in the Galmoenan intrusive

rocks [olivine (Fo79–92), clinopyroxene (1–3�5 wt % Al2O3,

0�1–0�5 wt % TiO2), and Cr-spinel (5–15 wt % Al2O3 and

0�3–0�7 wt % TiO2)] are typical of liquidus assemblages in

primitive island-arc magmas in intra-oceanic settings, and closely

resemble the mineral compositions in the Achaivayam–Valaginskii

ultramafic volcanic rocks. The temporal and spatial association of

intrusive and extrusive units, and the similarity of their mineral

compositions, suggest that both suites were formed from similar

parental magmas. The composition of the parental magma for the

Galmoenan plutonic rocks is estimated using previously reported

data for the Achaivayam–Valaginskii ultramafic volcanic rocks

and phenocryst-hosted melt inclusions. Quantitative simulation of

crystallization of the parental magma in the Galmoenan magma

chamber shows that the compositions of the cumulate units are best

modelled by fractional crystallization with periodic magma replen-

ishment. The model calculations reproduce well the observed mineral

assemblages and the trace element abundances in clinopyroxene.

Based upon the estimated composition of the parental magmas and

their mantle source, we consider that fluxing of a highly refractory

mantle wedge (similar to the source of boninites) by chlorine-rich

aqueous fluids is primarily responsible for both high degrees of partial

melting and the geochemical characteristics of the magmas, including

their enrichment in platinum-group elements.
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INTRODUCTION

Alaskan-type plutonic complexes were recognized in SE
Alaska as a distinct class of intrusions in the 1960s, based
on their tectonic setting, composition, internal structure
and mineralization (Noble & Taylor, 1960; Taylor &
Noble, 1960). In addition to the type locality, similar
intrusions have been documented in convergent plate
margin settings worldwide—in British Columbia (e.g.
Nixon et al., 1990), Oregon (Gray et al., 1986), Venezuela
(Murray, 1972), New SouthWales, Australia ( Johan et al.,
1989), Southland, New Zealand (Spandler et al., 2000,
2003), the Ural Mountains (Taylor, 1967) and the Koryak
Highland, Northern Kamchatka, Russia (Batanova,
1991; Batanova & Astrakhantsev, 1992, 1994). Alaskan-
type plutons are often concentrically zoned and com-
posed (from core to margin) of dunite, wehrlite, olivine
clinopyroxenite and hornblende clinopyroxenite, and
minor gabbro (Himmelberg & Loney, 1995). The most
important characteristic of these intrusive ultramafic
rocks is a primary magmatic enrichment in minerals
containing platinum-group elements (PGE) with the
Pt–Fe alloys (isoferroplatinum) dominating the assem-
blage (e.g. Slansky et al., 1991; Cabri et al., 1996).
It has been proposed that Alaskan-type intrusions

are cumulates derived from the crystallization of hydrous
mafic and ultramafic magmas (e.g. Murray, 1972;
Irvine, 1974; Himmelberg & Loney, 1995; Helmy &
El Mahallawi, 2003). However, the composition and
crystallization history of such magmas remain controver-
sial. Irvine (1973, 1974) argued for fractionation of alka-
line ultramafic parental magmas (ankaramite) based on
the study of subduction-related, K-enriched magnesian
rocks from the Juneau area (Alaska). Later research estab-
lished the origin of the parental magmas of the Alaskan
intrusives in a supra-subduction zone tectonic setting,
and suggested a subalkaline, orthopyroxene-normative
composition (e.g. Nixon et al., 1990; Kepezhinskas et al.,
1993; Sha, 1995). In a recent review, Himmelberg &
Loney (1995) advocated fractional crystallization of a
H2O-saturated subalkaline island-arc basalt magma for
the origin of Alaskan-type complexes based on compar-
ison of their chemical and mineral compositions and the
compositions of clinopyroxenite and gabbro xenoliths in
the Aleutian arc lavas.
The true nature of the magmas parental to Alaskan-

type intrusions and their crystallization paths remains
a petrological challenge, particularly in relation to the
specific enrichment of these magmas in PGE. Several
approaches are used to estimate the compositions of
magmas parental to mafic–ultramafic intrusives. Some
qualitative methods use the compositions of cumulate
minerals, their relative abundances and the order of crys-
tallization (e.g. Thy et al., 1989). Other semi-quantitative
methods are based on the use of compositions of chilled

margins and aphyric sills and dykes (Hoover, 1989;
Greenwood et al., 1990), the compositions of individual
minerals and crystal–melt partition coefficients (e.g. Ross
& Elthon, 1993), and melt inclusion studies (Batanova
et al., 1996; Spandler et al., 2000). An alternative approach
to constrain the parental magma compositions of the
plutonic rocks is the study of spatially and temporally
associated volcanic units, as suggested by Irvine (1973).
Based on age and Sr–Nd isotope data, Tistl et al. (1994)
proposed that spatially associated Alaskan-type ultramafic
intrusions and high-K primitive basalts in the Western
Cordillera of Colombia are genetically related. However,
the chemical and physical parameters of crystal fractiona-
tion and accumulation in this case were not quantitatively
constrained.
In this study we estimate the compositions of the

magmas parental to the Alaskan-type complexes that are
widespread in the Kamchatka–Koryak Highland region
(NE Russia) using the Galmoenan plutonic complex as an
example. This intrusive complex is typical of a regional
palaeo island-arc system, formed in the Late Cretaceous–
Paleocene (Astrakhantsev et al., 1991; Batanova &
Astrakhantsev, 1992, 1994; Kepezhinskas et al., 1993),
and is well studied because of associated platinum placer
deposits (Mochalov et al., 2002; Nazimova et al., 2003). An
important component of the same magmatic palaeo-
system is primitive ultramafic volcanic rocks (pillow
lavas and dykes), which are highly enriched in large-
ion lithophile elements (LILE; Sobolev et al., 1989;
Kamenetsky et al., 1995). The occurrence of an extrusive
series in close temporal and spatial association with the
intrusive complexes is used in this study for the quan-
titative reconstruction of the composition of the
Galmoenan parental magmas. The COMAGMAT 3.5
phase equilibria model (Ariskin et al., 1993; Ariskin, 1999)
is applied to constrain the crystallization sequence and
mechanisms responsible for the origin of the substantial
volumes of ultramafic cumulates, including dunites.

BACKGROUND TO THE GEOLOGY

OF THE AREA

The Kamchatka Peninsula and the Koryak Highland
form part of the Mesozoic–Cenozoic active continental
margin of NE Asia (Fig. 1), where different continental
and subduction-related magmatic, sedimentary and
metamorphic terranes have been thrust over Late
Crataceous–Eocene continental-derived turbidite forma-
tions (Konstantinovskaia, 2001, and references therein).
One of these terranes, the Achaivayam–Valaginskii
Terrane (AVT), includes a number of suites formed in
an intra-oceanic arc setting in the Late Cretaceous–
Paleocene, and accreted into their current position during
the Paleocene–Miocene (Zinkevich & Tsukanov, 1992;
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Konstantinovskaia, 2001; Kovalenko, 2001). The base-
ment of the AVT is composed of Albian to Late Campa-
nian, interbedded mid-ocean ridge basalt (MORB)-type
volcanic rocks, radiolarian cherts, red jaspers and
hyaloclastites, covered by volcaniclastic rocks and
lavas of Late Campanian to Paleocene age with strong
island-arc geochemical affinities (Astrakhantsev et al.,
1987; Konstantinovskaia et al., 1993; Batanova &
Astrakhantsev, 1994). Several suites, varying in composi-
tion from tholeiitic to high-K (shoshonitic) basalts, have
been recognized among the AVT volcanics (Fedorov,
1990; Magakyan et al., 1993). Ultramafic members of
the high-K series (pillow lavas, dykes, sills, and tuffs) are
present in several localities in eastern Kamchatka and
the southern Koryak Highland (Sobolev et al., 1989;
Fedorov, 1990; Zinkevich et al., 1991; Kamenetsky et al.,

1995), and are considered to be the most primitive
representatives of intra-oceanic island-arc high-K mag-
mas (Kamenetsky et al., 1995).
Spatially and temporally associated with the volcanic

complexes within the AVT is a belt of more than
20 intrusive bodies, interpreted to have been emplaced
in island-arc crust at different levels (Astrakhantsev et al.,
1991; Batanova, 1991; Batanova & Astrakhantsev, 1992,
1994; Kepezhinskas et al., 1993). The Galmoenan com-
plex (14 km � 3 km), located in the southern Koryak
Highland (Figs 1 and 2) is one of the largest and best
exposed of these intrusions. The host rocks are Albian–
Campanian silicified tuffs, argillites and black cherts
formed in an ocean-floor environment transitional to an
island-arc stage. The intrusive rocks were emplaced
before the folding and thrusting of the country rocks,
and were significantly affected by the latter processes,
resulting in plastic and brittle deformation and formation
of a serpentinite m�eelange. The intrusion is concentrically
zoned with dunite in the core, followed by wehrlite,
olivine clinopyroxenite, hornblende clinopyroxenite,
gabbro, and finally orthopyroxene-bearing quartz
hornfels at the contact with the country rocks (Fig. 2;
Astrakhantsev et al., 1991; Batanova, 1991; Batanova &
Astrakhantsev, 1994). The main lithological units of the
Galmoenan complex [which are structurally inverted
(Astrakhantsev et al., 1991)] are listed in Table 1 and
shown in Fig. 2. A dunite body forms the upper part
of the ultramafic section in the present-day structure
(sections A–B and C–D in Fig. 2); clinopyroxenite com-
monly underlies the dunite. Small gabbronorite bodies
(clinopyroxenite–hornblendite–gabbro unit, see Fig. 2)
form the outermost zones of the complex. Several relat-
ively thick (1–5m) mafic dykes were found within the
dunite, clinopyroxenite and country rocks.

STRUCTURE AND PETROGRAPHY

OF THE GALMOENAN COMPLEX

Dunite unit

A thick unit of dunites (650m) dominates the Galmoenan
plutonic complex. The dunite is composed of olivine
and Cr-spinel, and characterized by a tectonic fabric
produced during high-temperature plastic deformation
and recrystallization, coeval with emplacement and
later thrusting of the whole complex. Most common is a
subhorizontal planar fabric with pronounced foliation
of olivine porphyroclasts and relic lenses and layers
of coarse-grained polygonal and pegmatoid varieties.
The planar structures are sub-parallel to the dunite–
clinopyroxenite boundary. A range of microstructures
(porphyroclastic, granoblastic and mosaic) reflect differ-
ent degrees of deformation and recrystallization (e.g.
Fig. 3a). Veins of olivine clinopyroxenite (1–10 cm thick)

Fig. 1. Map showing the geographical position of the allochthonous
complexes of the Achaivayam–Valaginskii palaeo-arc system in the
Kamchatka Peninsula and South Koryak Highland. Simplified from
Shapiro (1995) and Konstantinovskaia (2001). GM, Galmoenan com-
plex; NB, Natalia Bay; TR, Tumrok Range; VR, Valaginskii Range.
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are present in the outer part of the dunite unit, close to
the contact with the clinopyroxenite.

Dunite–clinopyroxenite transition

The boundary between the dunite and clinopyroxenite
units is visually sharp, although clinopyroxene starts to

appear in the dunite before the contact. The amount
of clinopyroxene gradually increases over a distance of
100–200m across the contact. Olivine clinopyroxenite
veins (up to 1�5m thick) are abundant in this transition
zone. These veins are surrounded by wehrlite and
clinopyroxene-bearing dunite (Fig. 3b). Also, several lens-
like olivine clinopyroxenite layers up to 10m thick occur

Fig. 2. Detailed geological map and cross-sections of the Galmoenan complex showing sample locations. Modified from Batanova &
Astrakhantsev (1994).

1348

JOURNAL OF PETROLOGY VOLUME 46 NUMBER 7 JULY 2005



Table 1: Major rock types and characteristics of Galmoenan massif and AVT ultramafic volcanic rocks

Spl and Mt Ol Cpx

Sample Rock Texture Modal composition (%) Fe3þ/R3þ Cr-no. Fo Mg-no.

Dunite unit

19-2 D granular Ol (99); Spl (1) 0.37 75 90.1 ——

1000 D porphyroclastic Ol (95); Spl (5) 0.23 82 92.2 ——

14-5 Cpx D porphyroclastic Ol (95); Spl (2�5); Cpx (0�3) 0.26 73 88.9 91.9

320a Cpxt (vein) allotriomorphic- Cpx (100) —— —— —— 93�94
320b Ol Cpxt (vein) hypidiomorphic Cpx (80); Ol (20) —— —— 88.9 91.7

Clinopyroxenite unit

14-9 Wh hypidiomorphic�granular Ol (60); Cpx (40); Spl (<1);

Mt (rim of Spl grain)

0.37

0.88

60

100

86.9 88.7

9-2 Ol Cpxt porphyroclastic Ol (10; Cpx (90) —— —— 88.0 91.0

14-8 Ol Cpxt hypidiomorphic�granular Ol (15); Cpx (85) —— —— 88.4 91.3

14-10 Ol Cpxt hypidiomorphic�granular Ol (40); Cpx (60) —— —— 84.1 88.1

1605-1 Mt D (vein) hypidiomorphic�granular Ol (85�90); Cr�Ti�Mt (10�15) 0.66 61 85.1 ——

Clinopyroxenite�hornblendite�gabbro unit

14-13 Ol Cpxt hypidiomorphic�granular Ol (20); Cpx (80); Mt (<1) 0.91 0.56 81.9 85.4

1605 Ol Cpxt hypidiomorphic�granular Ol (10); Cpx (95); Mt (5) 0.94 33 82.0 84.0

12-6 Ol Mt Cpxt hypidiomorphic�granular Ol (5); Cpx (90); Mt (5); Phl, Hb (<1) 0.93 43 80.0 83.4

12-2 Pl Cpxt porphyritic Ol (3); Cpx (80); Pl (5); Hb (5); Mt (7) 0.90 40 79.0 85* 80y
12-10 Ol Phl Gn porphyritic Ol (5); Cpx (60); Opx (10);

Pl (15); Phl (5); Mt (5)

0.93 38 81.9 86�87*

79�80y
12-12a Gn porphyritic Cpx (45); Opx (10); Pl (30); Hb (3);

Mt (10); Phl (1); K-Fsp (1)

0.92 13 —— 77.6

12-12b Gn porphyritic Cpx (45); Opx (15); Pl (30);

Mt (10); Phl (<1)

—— —— —— 85.5*

72.2y
12-13a Nrt fine-grained equigranular Opx (25); Pl (65); Mt (10) 0.97 0 —— ——

14-12 Hbt hypidiomorphic Hb (90); Mt (10); titanite (<1%) —— —— —— ——

AVT ultramafic volcanic rocks

Tumrok Range

DAN-51 picrite porphyritic Ol and Cpx phenocrysts 0.13�0.37 71.5�80.3 87.2�93.0 82.5�87.8*

Pl-free matrix

DAN-57 picrite porphyritic Ol (altered) and Cpx phenocrysts —— —— —— 82�88
altered Pl-free matrix

Valaginskii Range

KB-189 picrite porphyritic Ol (altered) and Cpx phenocrysts —— —— —— 83�91.8*

altered Pl-free matrix

Natalia Bay

F815-9 picrobasalt porphyritic Cpx phenocrysts þ altered Pl-free matrix —— —— —— 86�88*

71�74y

Cpx, clinopyroxene; Ol, olivine; Opx, orthopyroxene; Phl, phlogopite; Pl, plagioclase; Spl, spinel; Hb, hornblende; K-Fsp,
K-feldspar; Mt, magnetite; Cpxt, clinopyroxenite; D, dunite; Gn, gabbronorite; Hbt, hornblendite; Nrt, norite; Wh, wehrlite.
Cr-number ¼ 100 � Cr/(Cr þ Al), mol %; Mg-number ¼ 100 � Mg/(Mg þ Fe), mol %; R3þ ¼ Cr þ Al þ Fe3þ, mol %.
*Core of mega- or phenocryst.
yMatrix microcryst and/or rim of mega- or phenocryst.
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Fig. 3. (a) Porphyroclastic-textured dunite composed of kink-banded olivine porphyroclasts surrounded by olivine neoblasts. (b) Interstitial
phlogopite in clinopyroxene-bearing dunite of the transitional dunite–clinopyroxenite zone. (c) Porphyroclastic-textured olivine clinopyroxenite,
showing strongly strained clinopyroxene porphyroclasts surrounded by recrystallized olivine and clinopyroxene neoblasts. (d) Non-deformed
olivine clinopyroxenite with a cumulate hypidiomorphic–granular texture. (e) Hornblende clinopyroxenite showing poikilitic hornblende crystals.
(f ) Gabbronorite with poikilitic phlogopite (light brown) and hornblende (green–brown) in interstitial aggregates. (a)–(e) in cross-polarized light;
(f ) in plane-polarized light.
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inside the dunite, above the main dunite–clinopyroxenite
transition zone. The transitional zone in the northern part
of the complex is characterized by dunite–wehrlite–
clinopyroxenite inter-layering (up to 100m thick). The
wehrlite of the dunite–clinopyroxenite transition zone
contains abundant spinel, whereas the wehrlite within
the clinopyroxenite unit is typically spinel-free. The high-
temperature ductile deformation observed in the dunite
unit is also characteristic of the rocks in the transition
zone, represented by a porphyroclastic textures (Fig. 3c).

Clinopyroxenite unit

The rocks of the clinopyroxenite unit (up to 450m thick)
show no regular stratification, either compositionally
or texturally. Bimineralic, coarse- to medium-grained
olivine–clinopyroxene rocks are dominant; subordinate
magnetite-bearing lithologies with sideronitic textures
(xenomorphic magnetite in the matrix cementing clino-
pyroxene) form layers (up to 50m thick) throughout the
clinopyroxenite unit. There is only a weak planar fabric
but local modal layering conforms to the general dunite–
clinopyroxenite boundary. Cumulate hypidiomorphic–
granular textures are often preserved in the rocks
(Fig. 3d), and intracrystalline deformation is developed
in mineral grains (sectoral extinction of clinopyroxene,
kink-banding in olivine). Clinopyroxene often contains
inclusions of phlogopite. Several micro-veins of dunite
(up to 5 cm thick) are found within the magnetite-bearing
olivine clinopyroxenite.

Clinopyroxenite–hornblendite–gabbro unit

A clinopyroxenite–hornblendite–gabbro unit (up to
500–600m thick) is located in the outermost zone of the
complex. This unit displays a large variety of petrographic
and structural features. The clinopyroxenites include
hornblende- (Fig. 3e), plagioclase- and magnetite-bearing
types, with up to 25% of magnetite in the latter. Close to
the contact with the country rocks, the unit is composed
of plagioclase- and phlogopite-bearing (� K-feldspar)
olivine clinopyroxenite, olivine gabbro, gabbronorite
and monzogabbro. These lithologies are characterized by
porphyritic textures (Fig. 3f ). The contact rocks are aphy-
ric microgabbronorites, micronorites (chilled margin) and
orthopyroxene-bearing quartz hornfels (metamorphosed
wall rock).

AVT ULTRAMAFIC VOLCANIC

ROCKS

Ultramafic volcanic rocks have been previously described
from the Valaginskii Range (VR), Tumrok Range (TR)
and Natalia Bay (NB) (e.g. Markovsky & Rotman, 1971;
Sobolev et al., 1989; Fedorov, 1990; Kamenetsky et al.,

1995) (Fig. 1). These rocks are strongly porphyritic
picrites (up to 40–75 vol. % of olivine and up to 20 vol. %
of clinopyroxene phenocrysts) with a glassy to micro-
crystalline matrix. The phenocrysts commonly contain
inclusions of Cr-spinel and melt. The glassy matrix
has a spinifex texture, and is composed of altered glass,
clinopyroxene, amphibole, phlogopite and titanomag-
netite. Previously studied samples of picrite from TR
(DAN-51, DAN-57) and VR (KB-189) and picrobasalt
from NB (F815-9) were chosen for comparison with the
Galmoenan olivine–clinopyroxene cumulates.

MINERAL COMPOSITIONS OF THE

GALMOENAN COMPLEX AND

AVT ULTRAMAFIC VOLCANICS

Olivine

Olivine is present in all ultramafic andmost mafic suites of
the Galmoenan complex. The olivine is most magnesian
in the dunite (Fo90–92, Table 2; see Appendix for analyt-
ical techniques) and becomes progressively less forsteritic

Table 2: Representative analyses of olivine from the

Galmoenan massif

Sample: 19-2 1000 14-5 320b 9-2 14-8 14-9 14-10

Rock: D D Cpx D Ol Cpxt Ol Cpxt Ol Cpxt Wh Ol Cpxt

SiO2 40.89 41.81 41.36 40.76 40.75 40.98 40.63 39.92

FeO* 9.11 7.74 10.68 10.58 11.50 11.08 12.14 14.67

MnO 0.19 0.26 0.15 0.24 0.22 0.05 0.09 0.06

MgO 50.29 51.29 48.21 47.45 47.16 47.19 45.27 43.68

NiO 0.15 0.33 0.21 0.22 0.08 0.05 0.10 0.06

CaO 0.06 0.10 0.09 0.17 0.00 0.05 0.01 0.04

Total 100.69 101.53 100.70 99.42 99.71 99.40 98.24 98.43

Fo 90.8 92.2 88.9 88.9 88.0 88.4 86.9 84.1

Sample: 14-13 1605 1605-1 12-6 12-2 12-10

Rock: Ol Cpxt Ol Cpxt Mt D (vein) Ol Mt Cpxt Pl Cpxt Ol Phl Gn

SiO2 37.79 39.31 39.72 39.25 39.27 39.14

FeO* 17.30 16.87 14.05 19.01 19.26 17.53

MnO 0.36 0.43 0.29 0.28 0.45 0.31

MgO 44.03 43.27 45.08 42.80 40.74 44.50

NiO 0.16 0.09 0.12 0.07 0.13 0.18

CaO 0.05 0.07 0.04 0.04 0.03 0.04

Total 99.69 100.04 99.30 101.45 99.88 101.70

Fo 81.9 82.0 85.1 80.0 79.0 81.9

*Total Fe as FeO.
Fo ¼ 100 � (Mg/Mg þ Fe2þ).
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in the rocks surrounding the dunite core: Fo89 in olivine
clinopyroxenite and clinopyroxenite veins in dunite,
Fo88–84 in clinopyroxenite, and Fo79 in plagioclase
clinopyroxenite and olivine gabbro. Olivine phenocrysts
in the AVT ultramafic volcanic rocks range in composi-
tions from Fo95 to Fo82, but most samples are Fo92–90;
several different populations of olivine, varying in CaO
content at a given Fo content, have been described
(Kamenetsky et al., 1995).

Spinel

Spinel group minerals in the Galmoenan rocks are
represented by Cr-spinel (dunite), Cr-magnetite (wehrlite,
olivine clinopyroxenite) and magnetite (clinopyroxenite–
hornblendite–gabbro unit). Cr-spinel is characterized by
high Cr/(Cr þ Al) and Fe3þ/(Fe3þ þ Cr þ Al) and low
Mg-number [100 � Mg/(Mg þ Fe2þ)], TiO2 and Al2O3

(Table 3). Such compositions are typical of spinel in the
Alaskan-type complexes and primitive subduction-related
volcanic rocks (Figs 4 and 5). Spinel inclusions in olivine
from the AVT ultramafic–mafic volcanic rocks are of
similar composition, but are more magnesian owing to
the higher temperatures of final equilibration with olivine
(Figs 4 and 5).

Clinopyroxene

Major elements

Clinopyroxene in all Galmoenan plutonic units is diopsi-
dic in composition (Table 4, Fig. 6) with a high wolla-
stonite component (45–50%), and relatively low Al2O3

(1–3�5 wt %) and TiO2 (0�1–0�5 wt %) (Fig. 7a and b).
Similar compositions are reported for clinopyroxene
from the studied picrites KB-189, DAN-51, DAN-57
(Fig. 7, Table 5), and from the AVT ultramafic volcanic
rocks in general. TheMg-number decreases progressively
from 91 in clinopyroxene in the ultramafic cumulates to
78 in clinopyroxene in the mafic rocks (Fig. 7). The
increase in Al2O3 and TiO2 with decreasing Mg-number
of clinopyroxene (Fig. 7) reflects the crystallization trend
in H2O-bearing subduction-related magmas (Conrad &
Kay, 1984; DeBari & Coleman, 1989; Loucks, 1990), and
is also typical of Alaskan-type complexes (Himmelberg &
Loney, 1995) and of the AVT ultramafic volcanic rocks
(Kamenetsky et al., 1995).
Clinopyroxene in the ultramafic units is usually homo-

geneous, whereas the clinopyroxene phenocrysts in the
gabbros and dykes are often zoned. Two generations of
clinopyroxene are found in the plagioclase-bearing rocks.
The earlier generation comprises large zoned pheno-
crysts (up to 1 cm) with compositions similar to those in
the clinopyroxenite unit (e.g. Mg-number 87–88 mol %).
The later generation of smaller grains (0�5–1mm) is
identical in composition (Mg-number 72–80 mol %) to

Table 3: Representative analyses of spinel from the

Galmoenan massif

Sample: 19-2 1000 14-5 14-9* 14-9y
Rock: D D Cpx D Wh Wh

TiO2 0.67 0.37 0.76 0.73 0.58

Cr2O3 33.97 46.27 40.75 26.88 7.09

Al2O3 7.65 6.83 10.14 11.74 0.20

Fe2O3 28.03 17.92 18.36 27.74 59.40

FeO 24.81 21.92 23.13 25.55 29.88

MnO 1.44 0.55 0.00 0.00 0.02

MgO 5.02 7.17 7.28 5.05 0.71

NiO 0.06 0.24 0.04 0.08 0.18

Total 101.65 101.27 100.46 97.77 98.06

Fe3þ/R3þ 0.37 0.23 0.26 0.37 0.88

Cr-no. 75 82 73 60 100

Sample: 14-13 1605 1605-1 12-6 12-2

Rock Ol Cpxt Ol Cpxt Mt D Ol Mt Cpxt Pl Cpxt

TiO2 2.33 2.28 2.06 2.37 2.24

Cr2O3 3.20 1.27 13.50 1.82 2.23

Al2O3 1.67 1.82 5.81 1.72 2.66

Fe2O3 58.41 60.21 45.92 61.76 59.81

FeO 29.94 31.92 29.44 31.85 30.85

MnO 0.18 0.29 0.31 0.26 0.32

MgO 1.76 1.52 2.97 1.30 1.58

NiO 0.13 0.13 0.16 0.08 0.15

Total 97.62 99.44 100.17 101.16 99.84

Fe3þ/R3þ 0.91 0.94 0.66 0.93 0.90

Cr-no. 56 33 61 43 40

Sample: 12-10 12-12a 12-13a

Rock Ol Gn Gn Nrt

TiO2 2.84 4.40 0.89

Cr2O3 1.73 0.66 0.13

Al2O3 1.96 2.97 1.20

Fe2O3 60.93 56.77 65.47

FeO 31.13 32.92 32.15

MnO 0.29 0.33 0.36

MgO 2.00 1.80 0.39

NiO 0.18 0.10 0.00

Total 101.06 99.95 100.59

Fe3þ/R3þ 0.93 0.92 0.97

Cr-no. 38 13

*Core.
yRim.
Total iron was determined and Fe2O3 and FeO were
calculated from spinel stoichiometry.
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the rims of the phenocrysts of the earlier generation
(Table 4). Petrographic observations suggest that the cores
of phenocrysts formed prior to plagioclase crystallization,
whereas the rims of the phenocrysts and later generation
of clinopyroxene crystallized with plagioclase.

Trace elements

Clinopyroxenes from different lithological units of the
Galmoenan complex have similar C1-chondrite normal-
ized incompatible trace element patterns (Fig. 8a and b).
The characteristic feature of the Galmoenan clinopyrox-
enes is high Sr and low Zr normalized abundances
and relatively flat rare earth element (REE) patterns. The
trace element abundances (e.g. CeN, NdN, YbN) increase
as Mg-number of the clinopyroxene decreases (Table 4,
Fig. 9). The exception is Sr, the concentration of which
is nearly constant in clinopyroxene from all lithologies
(Fig. 8a and b).
Clinopyroxenes from the olivine clinopyroxenite veins

in dunite are characterized by the highest Mg-number
and the normalized concentrations of the middle rare
earth elements (MREE) and heavy rare earth elements
(HREE) similar to those in the clinopyroxenite unit.

At relatively constant HREE, La and Ce are highly vari-
able (Fig. 8a). Clinopyroxene in the plagioclase-bearing
lithologies is characterized by compositional zoning.
Usually the cores of the clinopyroxene phenocrysts have
the same trace element patterns as clinopyroxene from
the olivine–clinopyroxene cumulates, whereas the rims,
as well as grains composing the matrix, are markedly
enriched in incompatible elements (Fig. 8b).
Clinopyroxene phenocrysts from the AVT ultramafic

volcanic rocks exhibit trace elements patterns closely
similar to those observed for clinopyroxene from the
Galmoenan plutonic units (Fig. 8c). Clinopyroxenes from
the Galmoenan cumulates and the AVT volcanic rocks
are well matched in terms of abundances of moderately
incompatible elements (Al, Ti, HREE) (Figs 7 and 9),
whereas contents of highly incompatible elements (La,
Ce, Nd, Sm) are clearly different at a given Mg-number
of clinopyroxene. The VR clinopyroxene is most enriched
compared with clinopyroxene from TR and NB (con-
sistent with differences in VR and TR whole-rock and
melt inclusion compositions; Kamenetsky et al., 1995),
whereas the Galmoenan clinopyroxene is composition-
ally transitional. It is worth noting that clinopyroxene
from the olivine clinopyroxenite veins in dunites and

Fig. 4. Cr/(Cr þ Al) vs 100 � Mg/(Mg þ Fe2þ) and Fe3þ/(Fe3þ þ Cr þ Al) vs 100 � Mg/(Mg þ Fe2þ) for Cr-spinel in the Galmoenan complex
and AVT ultramafic volcanic rocks (Kamenetsky et al., 1995). The compositional fields of spinel are shown for abyssal peridotites (Dick & Bullen,
1984), boninites and MORB (Barnes & Roeder, 2001), Alaskan-type complexes (Burns, 1985; Himmelberg et al., 1986; Himmelberg & Loney,
1995), Aleutian pyroxenite and gabbro xenoliths (Conrad & Kay, 1984; DeBari et al., 1987; DeBari & Coleman, 1989).
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later generation (rims of phenocrysts and matrix grains)
clinopyroxene in gabbros is as enriched in most incom-
patible elements as the VR clinopyroxene (Fig. 9).

Hornblende and phlogopite

Representative compositions of hornblende and phlogo-
pite from the Galmoenan complex are given in Table 6.
Hornblende ranging in composition from pargasite to
edenite is ubiquitous in theclinopyroxenite–hornblendite–
gabbro unit. Phlogopite is present in clinopyroxene-bear-
ing dunites of the dunite–clinopyroxenite transition zone
as rare interstitial grains (Fig. 3b), and becomes common
in the more evolved (less magnesian) rocks, appearing as
inclusions in clinopyroxene. In gabbros, phlogopite is an
abundant intercumulus phase, surrounding clinopyrox-
ene and plagioclase (Fig. 3f).

CRYSTALLIZATION MODELLING

Parental melt and input parameters

To model the crystallization processes responsible for the
formation of the ultramafic–mafic cumulates we need to
define the composition of the parental melt. The inferred

genetic link between the Galmoenan plutonic units and
the AVT ultramafic volcanic rocks suggests that they
could be the products of chemically similar parental
magmas. As the composition of the Galmoenan clinopyr-
oxene is most similar to the compositions of volcanic
clinopyroxene from TR and NB (Fig. 9) the primary
melt defined for the TR ultramafic volcanic rocks
(Table 7, composition 1; Kamenetsky et al., 1995) was
chosen to represent the parental magma composition of
the Galmoenan complex. Accordingly, the Galmoenan
parental melt is ultramafic (23�8 wt % MgO), with relat-
ively high H2O (0�6 wt %), Cl (0�14 wt %) and total alkali
contents (2�2 wt %). Its trace element composition was
estimated using the compositions of melt inclusions
trapped in TR primitive olivine phenocrysts (sample
DAN-51; Kamenetsky et al., 1995; Table 7). The degree
of oxidation of Fe in the melt [(Fe2þ/Fe3þ)L ¼ 3] was
calculated using the Fe2þ/Fe3þ of Cr-spinel and the
model of Maurel & Maurel (1982).
Preliminary modelling using the COMAGMAT

algorithm (Ariskin et al., 1993) shows that the earliest
Galmoenan clinopyroxene (Mg-number 90–91) could
have crystallized from the model primary melt at a pres-
sure of 3–4 kbar at the given oxidation conditions.

Crystallization models

The ultramafic parental melt (Table 7) is in equilibrium
with olivine þ Cr-spinel (Kamenetsky et al., 1995). Oliv-
ine fractionation was simulated using the PETROLOG
2.1 package (Danyushevsky, 2001) until saturation with
clinopyroxene was reached (�17% of olivine fractiona-
tion leading to high-Mg basaltic melt, Table 7, composi-
tion 2). The simulation of further cotectic crystallization
can be performed using either the MELTS algorithm
(Ghiorso & Sack, 1995) or COMAGMAT (Ariskin et al.,
1993). It has been demonstrated (Yang et al, 1996; Slater
et al., 2003; Thompson et al., 2003) that both algorithms
produce comparable results. However, MELTS tends to
overestimate the clinopyroxene crystallization temperat-
ure, especially at elevated pressures. On the other hand,
COMAGMAT calculates more realistic proportions of
cotectic olivine, clinopyroxene and plagioclase, and this
explains our preference for COMAGMAT (version 3.5)
in the crystallization modelling of the thick (>450m)
olivine–clinopyroxene units of the Galmoenan complex.
Modelling of simple fractional crystallization (Fig. 10)

results in a large range of clinopyroxene compositions in
the cumulates, but limits crystallization of olivine once
clinopyroxene is on the liquidus. Cessation of olivine crys-
tallization is caused by the reaction under given oxida-
tion conditions: olivine þ O2 ¼ pyroxene þ magnetite
(Ariskin, 2003). Therefore, this model does not explain
the presence of olivine in the Galmoenan olivine–
clinopyroxene cumulate rocks.
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Fig. 5. Comparison of TiO2 (wt %) and Al2O3 (wt %) contents in
Cr-spinel in the Galmoenan rocks with compositions of Cr-spinel in
volcanic and plutonic complexes from different tectonic environments:
AVT ultramafic volcanic rocks (Kamenetsky et al., 1995), Alaskan-
type complexes from Alaska (Himmelberg et al., 1986; Himmelberg
& Loney, 1995), Aleutian pyroxenite and gabbro xenoliths (Conrad &
Kay, 1984; DeBari et al., 1987; DeBari & Coleman, 1989), continental
flood basalts (CFB), ocean island basalts (OIB), mid-ocean ridge basalts
(MORB), and island-arc series after Kamenetsky et al. (2001).
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Table 4: The composition of clinopyroxene from the Galmoenan massif

Sample: 14-5 320a 320b 14-9 9-2 14-8 14-10 14-13 12-6 1605 12-2

Rock: Cpx D Cpxt Ol Cpxt Wh Ol Cpxt Ol Cpxt Ol Cpxt Ol Cpxt Ol Cpxt Ol Cpxt Pl Cpxt

c r

Major elements (wt %)

SiO2 54.76 53.36 53.55 52.54 53.94 54.23 53.25 51.96 52.96 51.33 53.68 52.91

TiO2 0.13 0.11 0.19 0.13 0.11 0.11 0.14 0.19 0.24 0.28 0.25 0.38

Cr2O3 0.52 0.51 0.61 0.71 0.35 0.38 0.37 0.23 0.11 0.04 0.16 0.11

Al2O3 1.17 1.33 1.70 1.31 1.08 1.13 1.39 1.91 2.31 3.07 2.00 3.00

FeO* 2.61 2.03 2.63 3.70 3.05 2.84 4.06 4.81 5.57 6.13 4.89 6.58

MnO 0.05 0.05 0.04 0.03 0.10 0.10 0.14 0.12 0.15 0.21 0.12 0.26

MgO 16.61 16.84 16.21 16.30 17.25 16.77 16.82 15.75 15.68 15.43 15.69 15.54

CaO 24.18 24.81 24.87 23.25 23.44 23.92 23.61 23.43 22.97 22.52 23.18 21.36

Na2O 0.31 0.26 0.25 0.22 0.20 0.22 0.22 0.19 0.25 0.22 0.19 0.30

Total 100.34 99.28 100.05 98.19 99.52 99.70 100.00 98.59 100.24 99.23 100.16 100.44

Mg-no. 91.9 93.7 91.7 88.7 91.0 91.3 88.1 85.4 83.4 81.8 85.1 80.8

Trace elements (ppm)

Ti 696 674 1087 n.d. 692 607 856 1180 1490 n.d. 1300 2390

Sr 163 115 119 n.d. 88 102 104 86 118 n.d. 115 113

Y 3.03 2.28 3.87 n.d. 1.94 1.52 2.65 3.24 5.98 n.d. 4.25 22.7

Zr 1.43 0.79 1.93 n.d. 0.47 0.57 0.91 1.2 3.4 n.d. 2.4 11

La 0.39 0.27 0.99 n.d. 0.092 0.12 0.15 0.14 0.38 n.d. 0.31 0.95

Ce 1.2 0.69 2.8 n.d. 0.41 0.45 0.61 0.56 1.5 n.d. 1.2 4.9

Nd 1.3 0.83 2.7 n.d. 0.69 0.59 0.89 1.1 2.1 n.d. 1.5 7.7

Sm 0.39 0.35 0.82 n.d. 0.32 0.27 0.37 0.46 0.92 n.d. 0.69 3.4

Eu 0.14 0.13 0.29 n.d. 0.11 0.096 0.16 0.21 0.32 n.d. 0.24 0.98

Dy 0.46 0.39 0.74 n.d. 0.39 0.27 0.47 0.58 1.1 n.d. 0.82 4.2

Er 0.38 0.23 0.42 n.d. 0.21 0.13 0.3 0.36 0.68 n.d. 0.5 2.4

Yb 0.28 0.23 0.34 n.d. 0.16 0.13 0.27 0.27 0.55 n.d. 0.42 2.2

Sample: 12-10 12-12a 12-12b

Rock: Ol Gn Gn Gn

c c r m c c m

Major elements (wt %)

SiO2 52.71 52.74 50.13 50.42 52.01 52.64 52.66

TiO2 0.16 0.16 0.68 0.65 0.36 0.12 0.31

Cr2O3 0.25 0.30 0.13 0.13 0.08 0.32 0.02

Al2O3 1.90 1.53 5.34 5.41 3.26 1.44 1.49

FeO* 4.70 4.24 6.70 6.89 7.18 4.81 9.43

MnO 0.11 0.14 0.14 0.21 0.24 0.11 0.36

MgO 16.58 16.63 14.57 14.59 14.71 15.94 13.76

CaO 22.66 23.22 22.12 22.35 21.93 23.51 21.35

Na2O 0.25 0.21 0.48 0.45 0.34 0.19 0.29

Total 99.32 99.17 100.29 101.10 100.11 99.08 99.67

Mg-no. 86.3 87.5 79.5 79.0 78.5 85.5 72.2
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The second model simulates fractional crystallization
(10%) of a high-Mg basalt followed by periodic replen-
ishment of the magma chamber by, and mixing with,
small batches (5%) of the parental ultramafic melt
(Fig. 11). As expected, the results of this modelling at an
early stage of crystallization are not significantly different
from simple fractional crystallization (compare Figs 10

and 11). However, after the second cycle of modelled
crystallization and replenishment, clinopyroxene follows
olivine within every cycle (Fig. 11). This model creates a
series of olivine-bearing, clinopyroxene-rich crystalliza-
tion products with progressively changing Mg-number
of olivine (93 to 80) and clinopyroxene (91 to 79). This
is consistent with the actual mineral compositions in the
Galmoenan cumulates (olivine Fo92 to Fo79, clinopyrox-
eneMg-number 91 to 80). Also thismodel reproduces well
the advanced stages of crystallization [olivine-bearing
plagioclase-rich (gabbroic) rocks; see Fig. 11] and descr-
ibes best the Galmoenan plutonic crystallization trends.

Modelling of the trace element
composition of clinopyroxene

A model of fractional crystallization combined with peri-
odic replenishment of new magma was used to simulate
the trace element compositions of liquidus clinopyroxene,
and thus to test the applicability of the model to the
Galmoenan cumulates. We used the clinopyroxene/
melt partition coefficients and their temperature depend-
ence as defined by Sobolev et al. (1996) for an island-arc
H2O-bearing basaltic melt and low-Al liquidus clinopyr-
oxene compositions (Table 8). The other commonly used
clinopyroxene/melt partition coefficients (e.g. Wood &
Blundy, 1997) correspond to more Al-rich clinopyroxene
and dry conditions and predict much higher values for
HREE.

Table 4: continued

Sample: 12-10 12-12a 12-12b

Rock: Ol Gn Gn Gn

c c r m c c m

Trace elements (ppm)

Ti 1100 823 4320 4270 n.d. n.d. n.d.

Sr 121 108 71 73 n.d. n.d. n.d.

Y 4.65 2.42 24.7 22.7 n.d. n.d. n.d.

Zr 3.8 0.97 30 22 n.d. n.d. n.d.

La 0.44 0.23 3.6 3.3 n.d. n.d. n.d.

Ce 1.5 0.77 13 11 n.d. n.d. n.d.

Nd 1.8 1.0 11 9.5 n.d. n.d. n.d.

Sm 0.8 0.37 3.7 3.2 n.d. n.d. n.d.

Eu 0.28 0.14 1.2 1.1 n.d. n.d. n.d.

Dy 0.85 0.52 4.1 3.8 n.d. n.d. n.d.

Er 0.52 0.22 2.6 2.5 n.d. n.d. n.d.

Yb 0.45 0.21 2.2 2.2 n.d. n.d. n.d.

*Total iron as FeO.
c, r, core and rim zone of porphyritic grains respectively; m, grains in the matrix.

Ca

Mg Fe
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0 25
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AVT ultramafic volcanic rocks

Fig. 6. Clinopyroxene compositions in the Galmoenan complex, AVT
ultramafic volcanic rocks and Alaskan-type complexes (Himmelberg
et al., 1986; Himmelberg & Loney, 1995).
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The COMAGMAT algorithm calculates temperatures
and modal proportions of liquidus phases for each crys-
tallization increment (1%). This permits calculation of
the bulk crystal/melt partitioning of selected trace
elements at a given temperature. The crystallization of
olivine–clinopyroxene (� magnetite) cumulates suggests
that the varying clinopyroxene/melt partition coefficients
(Sobolev et al., 1996) and the varying clinopyroxene frac-
tion among the accumulating crystals should principally
control the behaviour of Sr, Y and REE, as the abund-
ances of these elements in olivine and spinel are insigni-
ficant relative to those in the coexisting clinopyroxene
(e.g. Green, 1994; Nielsen et al., 1994). The subsequent
crystallization of plagioclase should strongly affect Sr
partitioning, whereas REE partitioning remains relatively
unchanged (e.g. Bindeman et al., 1998; Lesnov, 2001).
Figure 12 shows that the compositions of clinopyroxene

calculated using the model of fractional crystallization
with periodic melt replenishment are indeed within
the measured range of the Galmoenan clinopyroxene
and compositionally analogous clinopyroxene from some
AVT ultramafic volcanics (Tumrok Range and Natalia

Bay). As we previously pointed out, clinopyroxene from
the Valaginskii Range, although similar in HREE abund-
ances, is more enriched in LREE and MREE and thus
does not belong to the calculated trend.
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Table 5: Representative compositions of clinopyroxene phenocrysts from AVT ultramafic volcanic rocks

Region: VR VR VR VR VR VR VR VR VR

Sample: KB-189 KB-189 KB-189 KB-189 KB-189 KB-189 KB-189 KB-189 KB-189

Major elements (wt %)

SiO2 53.62 52.56 52.14 51.04 53.63 53.12 52.92 53.98 52.93

TiO2 0.15 0.23 0.23 0.46 0.16 0.18 0.23 0.09 0.18

Cr2O3 0.71 0.84 0.73 0.23 0.43 0.77 0.57 0.63 0.66

Al2O3 1.12 1.82 2.22 2.96 0.97 1.34 1.59 0.88 1.45

FeO* 2.78 4.01 4.34 5.59 3.27 3.13 3.86 2.83 3.58

MnO 0.05 0.07 0.09 0.08 0.08 0.06 0.08 0.07 0.06

MgO 17.55 16.86 16.64 15.73 17.56 17.45 16.98 17.73 17.03

CaO 23.64 23.15 23.17 23.37 23.55 23.48 23.38 23.50 23.51

Na2O 0.21 0.28 0.26 0.31 0.20 0.21 0.22 0.21 0.25

Total 99.83 99.80 99.82 99.77 99.85 99.72 99.82 99.92 99.65

Mg-no. 91.8 88.2 87.2 83.4 90.5 90.9 88.7 91.8 89.5

Trace elements (ppm)

Sr 114 117 127 197 100 108 116 80.9 139

Y 2.33 3.97 4.91 10.43 2.20 2.45 4.37 1.42 3.23

Zr 1.87 3.77 4.60 15.9 1.39 1.81 4.71 0.73 3.01

La 0.39 0.53 0.64 1.5 0.29 0.33 0.56 0.17 0.49

Ce 1.5 2.1 2.6 6.1 1.2 1.3 2.4 0.71 1.9

Nd 2.3 3.3 4.1 9.4 1.9 2.0 4.0 1.1 2.8

Sm 0.81 1.3 1.5 3.4 0.68 0.74 1.5 0.36 1.0

Eu 0.24 0.35 0.47 0.99 0.17 0.25 0.46 0.11 0.29

Dy 0.53 0.86 1.1 2.4 0.47 0.53 1.0 0.34 0.67

Er 0.22 0.37 0.47 1.0 0.18 0.21 0.41 0.13 0.30

Yb 0.17 0.31 0.36 0.80 0.17 0.20 0.34 0.10 0.24

Region: TR TR TR TR TR TR NB NB

Sample: DAN-51 DAN-51 DAN-51 DAN-51 DAN-57 DAN-57 F815-9 F815-9

Major elements (wt %)

SiO2 52.31 52.08 53.52 52.85 52.32 51.48 53.51 54.63

TiO2 0.13 0.20 0.14 0.16 0.16 0.19 0.21 0.13

Cr2O3 0.90 0.18 0.72 0.25 0.43 0.77 0.61 0.51

Al2O3 1.91 2.05 1.83 1.85 1.89 2.47 2.25 1.49

FeO* 4.18 6.16 4.15 4.76 5.12 5.05 4.89 4.19

MnO 0.10 0.14 0.09 0.11 0.13 0.12 0.09 0.11

MgO 16.80 16.29 16.80 16.71 16.68 16.24 16.25 16.42

CaO 22.83 22.28 23.00 22.98 22.37 22.40 24.02 23.66

Na2O 0.26 0.23 0.20 0.22 0.19 0.24 0.23 0.15

Total 99.41 99.60 99.46 99.89 99.29 98.96 102.04 101.29

Mg-no. 87.7 82.5 87.8 86.2 85.3 85.2 85.6 87.5

Trace elements (ppm)

Sr 66.5 69.9 65.5 61.1 53.0 57.6 91.7 65.7

Y 3.44 5.58 3.24 2.93 4.12 4.05 3.52 1.81

Zr 1.37 2.57 1.49 1.03 1.81 2.04 1.78 0.67

La 0.12 0.18 0.10 0.11 0.11 0.14 0.19 0.13

Ce 0.50 0.77 0.47 0.45 0.52 0.65 0.80 0.36
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DISCUSSION AND CONCLUSIONS

The temporal and spatial association of both the Alaskan-
type Galmoenan complex and the ultramafic extrusive
suites of the Achaivayam–Valaginskii terrane within the
same Late Cretaceous–Paleocene intraoceanic island-arc
system, allochthonously emplaced in the Koryak High-
land and Kamchatka Peninsula in NE Russia, suggests a
genetic affinity. The comagmatic nature of the intrusive
and extrusive rocks is supported by the composition of
their primitive liquidus assemblage—high-Mg olivine,
high-Cr and low-Ti spinel, and diopsidic clinopyroxene
depleted in Al and Ti (Figs 4–7). This allows us to assume
that both suites crystallized from similar parental mag-
mas. In other words, the magmas previously identified
as parental to the AVT volcanic rocks (Sobolev et al.,
1989; Kamenetsky et al., 1995) could be parental to
the cumulate rocks of the Galmoenan complex. These
ultramafic melts (19–24 wt % MgO), should be recog-
nized as a new magma type within the island-arc com-
positional spectrum. Unlike common subduction-related
magmas (calc-alkaline, tholeiitic and boninitic series)
they are exceptional in having significant enrichment in
potassium, chlorine and LILE relative to REE, strongly
depleted high-field strength elements of similar incom-
patibility, and MORB-like neodymium isotope ratios
(Kamenetsky et al., 1995). The high potassium contents
of the Galmoenan parental magmas are independently
supported by the presence of phlogopite in the ultramafic
rocks and gabbros and K-feldspar in the gabbros. We
note that arc-related high-Mg parental magmas enriched
in potassium have also been proposed for at least two
other Alaskan-type ultramafic complexes (Irvine, 1973;
Tistl et al., 1994).
The parental magma composition, proposed here to be

common for the Galmoenan plutonic units and the AVT
ultramafic volcanic rocks, is independently substantiated
by consideration of the trace element compositions of
clinopyroxene from both intrusive and extrusive suites
(Figs 8 and 9). First of all, their overall similarity argues
for crystallization from compositionally similar parental
melts, assuming that the partitioning of trace elements

between clinopyroxene and melt was similar in both
cases. Second, the calculated melt compositions in equi-
librium with clinopyroxene from the Galmoenan
cumulates and the AVT ultramafic volcanic rocks show
close similarity to the trace element compositions of
the inferred parental magmas of the AVT ultramafic
volcanic rocks, as represented by olivine-hosted melt
inclusions (Fig. 13). This is the most compelling evidence
for the formation of the Galmoenan cumulates from
ultramafic island-arc magmas, similar to those identified
previously for the extrusive sequences of the AVT
(Kamenetsky et al., 1995).
The simulation of crystallization in the Galmoenan

magma chamber from the parental magma (defined
based on the comparison of AVT ultramafic volcanic
rocks and their melt inclusions) shows that the com-
positions of the cumulate units are best modelled by a

Region: TR TR TR TR TR TR NB NB

Sample: DAN-51 DAN-51 DAN-51 DAN-51 DAN-57 DAN-57 F815-9 F815-9

Nd 0.89 1.32 0.80 0.78 0.97 1.05 1.2 0.59

Sm 0.41 0.65 0.34 0.34 0.48 0.54 0.60 0.34

Eu 0.15 0.26 0.14 0.15 0.17 0.19 0.22 0.10

Dy 0.62 1.17 0.62 0.59 0.76 0.88 0.58 0.28

Er 0.36 0.59 0.39 0.32 0.45 0.44 0.36 0.19

Yb 0.33 0.57 0.30 0.30 0.39 0.39 0.31 0.18

*Total iron as FeO.

Table 6: Representative analyses of hornblende and

phlogopite from the Galmoenan massif

Sample: 1605 12-6 12-2 12-10 12-12A

Rock: Ol Mt Cpxt Ol Cpxt Pl Cpxt Ol Gn Gn

Mineral: Hb Phl Hb Hb Phl Hb Phl

SiO2 44.88 39.65 43.51 43.13 38.12 44.12 38.42

TiO2 1.26 1.93 1.35 1.49 2.23 2.29 3.95

Cr2O3 0.09 0.10 0.00 0.00 0.09 0.32 0.15

Al2O3 13.28 17.02 11.56 12.70 16.98 11.82 15.98

FeO 9.02 7.19 9.63 9.67 8.62 10.69 10.76

MnO 0.21 0.00 0.15 0.14 0.07 0.09 0.05

MgO 16.26 22.79 15.23 16.14 21.14 14.58 17.70

CaO 12.30 0.04 11.98 12.37 0.01 12.41 0.04

Na2O 1.71 0.63 2.13 2.36 0.44 1.92 0.49

K2O 0.36 10.05 0.78 1.17 10.02 0.93 9.07

Total 99.37 99.40 96.32 99.1 97.72 99.17 96.61

Mg-no. 76.3 85.0 73.8 74.8 81.4 70.80 74.6
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process of fractional crystallization with periodic magma
replenishment. This provides reasonable explanations for
the large amounts of dunite present (�30 wt % of the
model parental melt; Fig. 11), the significant interval
of co-crystallization of olivine, clinopyroxene and later
plagioclase, and also the range of compositions (in terms
of Mg-number) of the liquidus mafic minerals.
An additional test for the validity of the crystallization

models can be provided by relationships between the
Mg-number and incompatible elements in the calculated
and actual clinopyroxene compositions (Fig. 12). The
model of fractional crystallization with replenishment
produces an instantaneous increase in both Mg-number
and trace element abundances in the clinopyroxene at
each ‘episode’ of replenishment, and thus approximates
the actual compositions of clinopyroxene from clinopyro-
xenites and gabbros better than simple fractionation
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Fig. 9. Relationships between Mg-number and chondrite-normalized
Yb, Nd and Ce in clinopyroxene from the Galmoenan complex and
AVT (VR, TR and NB) ultramafic volcanic rocks. Chondrite normal-
ization values are from Anders & Grevesse (1989). Mg-number ¼
100 � Mg/(Mgþ Fe2þ) (molecular proportion).

Table 7: The composition and fractionation of the

parental melt

1 2

Major elements (wt %)

SiO2 46.99 47.65

TiO2 0.29 0.35

Al2O3 8.20 9.81

FeOtot 9.22 9.87

MnO 0.12 0.14

MgO 23.80 17.63

CaO 8.71 10.42

Na2O 1.15 1.38

K2O 1.06 1.27

P2O5 0.20 0.24

H2O 0.62 0.74

Cl 0.14 0.17

Trace elements (ppm)

Sr 391 472

Y 7.0 8.4

Zr 14.0 16.9

La 2.49 3.00

Ce 4.99 6.02

Nd 3.37 4.06

Sm 1.14 1.38

Dy 1.44 1.74

Er 0.87 1.04

Yb 0.87 1.04

1, inferred parental melt composition of the Galmoenan
intrusive rocks. This composition represents the primary melt
previously defined for the AVT (Tumrok Range) ultramafic
volcanic rocks (Kamenetsky et al., 1995).
2, melt composition resulting from 17% olivine þ spinel
fractionation of the parental melt.
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Fig. 10. Modelling of simple fractional crystallization of the ultramafic parental melt. (a) Modal proportions of crystallizing minerals vs extent of
crystallization; (b) temperature and Mg-number of olivine and clinopyroxene during progressive crystallization.

Fig. 11. Modelling of fractional crystallization of the ultramafic parental melt with periodic replenishment. (a) Modal proportions of crystallizing
minerals vs extent of crystallization; (b) temperature and Mg-number of olivine and clinopyroxene during progressive crystallization.
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(Fig. 12). The model curves have the ‘sawtooth’ shape
reflecting the changes in the clinopyroxene composition
caused by mixing with the primitive magma. Simple
fractional crystallization produces a similar overall trend
(decreasing Mg-number with increasing REE); however,
the real REE concentrations in clinopyroxene are not
modelled well. We thus assume a dominant role of frac-
tional crystallization and replenishment of the magma
chamber with small batches of primitive melt. Although
the actual variations in composition, mass and frequency
of melt injections cannot be quantified, this model reflects
the general impact of the refilling on the final crystalliza-
tion products.
The systematically higher trace element abundances

at a given Mg-number in clinopyroxene from the veins
in dunites, and in clinopyroxene belonging to later
generation (rims of phenocrysts and matrix grains) in
the plagioclase-bearing rocks resemble the compositions
of clinopyroxene from the Valaginskii Range ultramafic
volcanic rocks (Figs 9 and 12). This, taken together with
the previously described stronger enrichment in incom-
patible trace elements of the Valaginskii Range (VR)
magmas compared with the Tumrok Range (TR) mag-
mas (Kamenetsky et al., 1995), may argue for a temporal
change in the magma composition during plutonic
evolution of the Galmoenan magmatic system. In other
words, there exists a possibility that the Galmoenan
magma chamber initially filled with a TR-type melt was
subsequently replenished with more enriched VR-type
melts. It has been suggested that the mantle source for
the ATV ultramafic magmas was a highly refractory
peridotite, fluxed with subduction-derived enriched melts
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tions were performed using the composition of olivine-hosted melt
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and the clinopyroxene/melt partition coefficients (Table 8) of Sobolev
et al. (1996). Chondrite normalization values are from Anders &
Grevesse (1989).

Table 8: Clinopyroxene/melt partition coefficients

T(�C): 1204 1150 1100 1078

Mg-no. Cpx: 91.0 86.6 80.7 78.0

La 0.020 0.029 0.042 0.050

Ce 0.037 0.055 0.082 0.099

Sr 0.12 0.083 0.059 0.051

Nd 0.06 0.12 0.22 0.29

Zr 0.027 0.043 0.067 0.083

Sm 0.10 0.19 0.35 0.47

Dy 0.11 0.24 0.54 0.79

Y 0.09 0.23 0.55 0.85

Er 0.10 0.21 0.43 0.61

Yb 0.10 0.20 0.42 0.59

Cpx/melt partition coefficients calculated using the equa-
tions of Sobolev et al. (1996). Temperature (T,�C) and cpx
composition (Mg-number) are calculated from the modelling
of fractional crystallization with replenishment using the
COMAGMAT algorithm.
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and fluids at a depth of at least 100 km (Kamenetsky
et al., 1995). We speculate that the observed evolution
of the Galmoenan magmatic system reflects the change
in the subduction-derived components (amount and
composition) in the mantle source.
The formation of magmatic platinum-group minerals

is a first-order function of the absolute quantity of PGE
available in the melt; thus we need to understand the
factors responsible for PGE enrichment in magmas. The
composition of the mantle source and the conditions
of melting are clearly important in constraining the PGE
enrichment of the parental magmas forming the
Galmoenan and other Alaskan-type intrusive complexes.
The mantle source proposed for the Galmoenan parental
magmas is a highly refractory peridotite, strongly depleted
in ‘basaltic’ components but subsequently metasomatized
by reaction with the trace element enriched fluids and
melts. This source could have been ‘pre-enriched’ in PGE
by previous melting episodes. Refractory mantle perido-
tite (harzburgite) has been proposed as the source of
primitive boninite magmas in subduction-related envir-
onments (e.g. Hickey & Frey, 1982; Cameron et al., 1983;
Crawford et al., 1989; Kamenetsky et al., 2002) and we
note that the AVT ultramafic volcanic rocks have
a ‘boninitic’ magma component represented by low-
Ca olivine phenocrysts and olivine-hosted clinoenstatite
inclusions (Kamenetsky et al., 1995). The origin of the
PGE mineralization in the Bushveld and Stillwater igne-
ous complexes has been ascribed to crystallization (in part)
from high-Mg boninitic magmas (e.g. Sharpe & Hulbert,
1985; Hatton & Scharpe, 1989; Boudreau et al., 1997).

Although the compatible behaviour of the PGE during
melting causes progressively increasing PGE abundances
in the refractory mantle residue, the preferential extrac-
tion of PGE into partial melts of harzburgite requires
additional constraints. These can be provided by numer-
ous studies on the role of chlorine-rich aqueous fluids in
the redistribution of PGE within their host intrusive rocks
(e.g. Boudreau et al., 1986; Hsu et al., 1991; Boudreau,
1993; Fleet & Wu, 1993) and transport at magmatic
conditions (Sassani & Shock, 1998). In accord with the
conclusions of Willmore et al. (2002), and the given high
chlorine contents in the AVT parental magmas, we envis-
age that fluxing of a refractory mantle wedge in a supra-
subduction zone tectonic setting by chlorine-rich aqueous
fluids is primarily responsible for the formation of PGE-
enriched magmas.
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APPENDIX

Analytical methods

Electron microprobe analyses of minerals were per-
formed using Cameca Camebax-Microbeam (Vernadsky
Institute of Geochemistry and Analytical Chemistry,
RAS Moscow) and JEOL Superprobe 8200 (Max Planck
Institut f€uur Chemie, Abt. Geochemie, Mainz) electron
microprobes using routine procedures. Operating condi-
tions were 15 kV and 5–20 nA. International natural
mineral standards from the Smithsonian Institution
were used ( Jarosevich et al., 1980). The ZAF correction
procedure was applied.
Trace element abundances in the clinopyroxenes

(Table 4) were analysed using a Cameca IMS-4f
ion microprobe (Institute of Microelectronics, RAS,
Yaroslavl, Russia) following the method of Shimizu &
Hart (1982). To improve beam stability and avoid mass
superposition, the 10 kV O2� was used instead of O� as a
primary beam. A primary beam current of 4 nA was
focused on the sample over a spot diameter of about
25 mm. Secondary ions were collected from the imaged
field of 25mm in diameter and energy filtered using a
sample offset voltage of �100 V and energy window of
50 eV (Sobolev, 1996). The analytical error was<10% for
most elements present in amounts higher than 0�1 ppm
and 30–50% for elements at lower concentration.
Trace element abundances in the clinopyroxenes

(Table 5) were obtained using a laser ablation inductively
coupled plasma-mass spectrometry (ICP-MS) system at
the Max Planck Institut f€uur Chemie, Mainz. This system
includes a NewWave, Merchantek UP213 UV Nd–YAG
laser coupled to a Finnigan-MAT Element-2 magnetic
sector field ICP-MS system. Samples were ablated using
90 mm spots, a repetition rate of 10 Hz and a laser energy
of 6 J/cm2 in He atmosphere. The measurements were
calibrated using the NIST SRM 612 and KL2-G refer-
ence glasses ( Jochum et al., 2000). Typical external pre-
cision is better than 4% (RSD) for most elements.
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