SOFIA INITIATIVE "MINERAL DIVERSITY PRESERVATION"

VIII International Symposium MINERAL DIVERSITY RESEARCH AND PRESERVATION

СОФИЙСКАЯ ИНИЦИАТИВА "СОХРАНЕНИЕ МИНЕРАЛЬНОГО РАЗНООБРАЗИЯ"

VIII Международный симпозиум МИНЕРАЛЬНОЕ РАЗНООБРАЗИЕ ИССЛЕДОВАНИЕ И СОХРАНЕНИЕ

> EARTH AND MAN NATIONAL MUSEUM 4, Cherny vruh Blvd., 1421 Sofia, Bulgaria 9 - 11 OCTOBER 2015

НАЦИОНАЛЬНЫЙ МУЗЕЙ "ЗЕМЛЯ И ЛЮДИ" бул. "Черни връх" 4, София 1421, Болгария 9 - 11 ОКТЯБРЬ 2015

СРАВНИТЕЛЬНАЯ КРИСТАЛЛОХИМИЯ ДВУХ РОДСТВЕННЫХ АРСЕНАТОВ ЩУРОВСКИИТА И ДМИСОКОЛОВИТА из ФУМАРОЛЬНЫХ ЭКСГАЛЯЦИЙ ВУЛКАНА ТОЛБАЧИК (КАМЧАТКА, РОССИЯ)

НАТАЛИЯ В. ЗУБКОВА¹, И.В. ПЕКОВ¹, Д.Ю.ПУЩАРОВСКИЙ¹, М.Ф. ВИГАСИНА¹, Е.Г. СИДОРОВ²

¹Московский государственный университет, Геологический факультет, Москва, Россия ²Институт вулканологии и сейсмологии ДВО РАН, Петропавловск-Камчатский, Россия e-mail: n.v.zubkova@gmail.com

Резюме. Представлены результаты структурного исследования и сравнительного кристаллохимического анализа двух новых минералов - щуровскиита K₂CaCu₆O₂(AsO₄)₄ и дмисоколовита K₃Cu₅AlO₂(AsO₄)₄ из продуктов фумарольной деятельности вулкана Толбачик, Камчатка, Россия. Оба минерала моноклинные, с близкими метриками решеток (параметр *c* в дмисоколовите удвоен по сравнению с щуровскиитом): пр.гр. *C2*, *a* = 17.2856(9), *b* = 5.6705(4), *c* = 8.5734(6) Å, β = 92.953(6)°, *V* = 839.24(9) Å³, *Z* = 2 (шуровскиит), пр.гр. *C2/c*, *a* = 17.0848(12), *b* = 5.7188(4), *c* = 16.5332(12) Å, β = 91.716(6)°, *V* = 1614.7(2) Å³, *Z* = 4 (дмисоколовит). Минералы являются представителями двух новых структурных типов, родственных между собой. В основе их структур лежат топологически близкие слои из полиэдров, центрированных Си и Al (дмисоколовит) и Cu (щуровскиит), образующие совместно с тетраэдрами AsO₄ гетерополиэдрические псевдокаркасы, в туннелях которых располагаются крупные катионы.

Abstract. Results of crystal structure investigation and comparative crystal chemical analysis of two new minerals shchurovskyite, K₂CaCu₆O₂(AsO₄)₄, and dmisokolovite, K₃Cu₅AlO₂(AsO₄)₄, from the products of fumarolic activity of the Tolbachik volcano (Kamchatka, Russia) are reported. Both minerals are monoclinic, with close values of unit cell parameters (the *c* parameter is doubled in dmisokolovite in comparison with shchurovskyite): space group *C*2, *a* = 17.2856(9), *b* = 5.6705(4), *c* = 8.5734(6) Å, β = 92.953(6)°, *V* = 839.24(9) Å³, *Z* = 2 (shchurovskyite); *C*2/*c*, *a* = 17.0848(12), *b* = 5.7188(4), *c* = 16.5332(12) Å, β = 91.716(6)°, *V* = 1614.7(2) Å³, *Z* = 4 (dmisokolovite). The minerals represent two novel structure types related to each other. They have topologically close main structural unit, the layer formed by the Cu²⁺- and Al-centred polyhedra (dmisokolovite) and by Cu²⁺-centred polyhedra (shchurovskyite). Together with AsO₄ tetrahedra the layers form Cu(Al)-As-O quasi-frameworks that host large cations in channels.

Новые минералы щуровскиит с идеализированной формулой K2CaCu6O2(AsO4)4 и дмисоколовит с идеализированной формулой K3Cu5AlO2(AsO4)4 открыты нами недавно в эксгаляциях активной фумаролы Арсенатной на Втором конусе Северного прорыва Большого трещинного Толбачинского извержения 1975-76 гг (СП БТТИ), расположенного в 18 км к югу от вулкана Плоский Толбачик (Камчатка, Россия) (Pekov et al., 2015а). Щуровскиит назван в честь выдающегося российского геолога и минералога, профессора Московского университета Григория Ефимовича Щуровского (1803–1884). Дмисоколовит получил название в честь Дмитрия Ивановича Соколова (1788–1852), известного российского геолога и минералога, профессора Санкт-Петербургского университета, академика Российской Императорской Академии наук. На рисунках 1а и 1б показана типичная морфология кристаллов щуровскиита и дмисоколовита соответственно.

Рис. 1. Кристаллы щуровскиита (а) и дмисоколовита (б). РЭМ-фото во вторичных электронах. Fig. 1. Crystals of shchurovsyite (a) and dmisokolovite (b). SEM (SE) image.

Исследование химического состава щуровскиита и дмисоколовита электронно-зондовым методом привело к следующим эмпирическим формулам (расчет на 18 атомов О):

щуровскиит - K_{2.05}Rb_{0.01}Ca_{0.96}Cu_{5.92}Zn_{0.06}Al_{0.01}P_{0.09}S_{0.05}As_{3.86}O₁₈;

дмисоколовит - $Na_{0.28}K_{2.36}Mg_{0.09}Ca_{0.04}Cu_{5.04}Zn_{0.04}Al_{0.95}Fe^{3+}_{0.05}P_{0.11}As_{3.88}O_{18}$.

Структурное исследование щуровскиита и дмисоколовита показало, что оба минерала моноклинные и характеризуются близкими значениями параметров элементарных ячеек, но при этом параметр с в дмисоколовите удвоен по сравнению с щуровскиитом. В таблице 1 кристаллографические представлены некоторые характеристики этих минералов. Экспериментальные данные для щуровскиита и дмисоколовита получены на монокристаллах с помощью дифрактометра Xcalibur S CCD. Кристаллические структуры новых минералов определены независимо на основе прямых методов и уточнены с использованием комплекса программ Shelx (Sheldrick, 2008) до следующих заключительных значений факторов расходимости: 0.0746 для 1598 независимых отражений с $I > 2\sigma(I)$ (щуровскиит) и 0.1345 для 850 независимых отражений с $I > 2\sigma(I)$ (дмисоколовит; модель).

Шуровскиит и дмисоколовит являются представителями двух новых структурных типов, родственных между собой. В их кристаллических структурах выделяются топологически близкие основные структурные единицы – (001) слои, построенные из кислородных полиэдров меди (щуровскиит) или меди и алюминия (дмисоколовит) (рис. 2а, б). У щуровскиита (в структуре которого выделяется четыре кристаллографически неэквивалентных позиции катионов Cu^{2+}) слои построены из вытянутых вдоль оси *b* колонок из чередующихся реберносоединенных CuO₆ октаэдров, центрированных катионами Cu(3) и храктеризующихся янтеллеровским искажением, и квадратов $Cu(4)O_4$. В структуре дмисоколовита (где катионы Cu^{2+} занимают три кристаллографичеки независимые позиции, катионы Al, частично замещенные на Fe^{3+} в соотношении $Al_{0.9}Fe_{0.1}$ - одну) в гетерополиэдрических (001) слоях выделяются колонки, вытянутые вдоль оси b и состоящие из реберно-соединенных чередующихся Cu(3)O₄ квадратов и практически правильных AlO₆ октаэдров. Квадраты, центрированные катионами Cu(3) в структуре дмисоколовита, могут рассматриваться и как октаэдры, но с очень сильным янтеллеровским искажением. В структурах обоих минералов эти цепочки связаны между собой зигзагооразными цепочками из соединенных по вершинам искаженных тетрагональных пирамид Cu(1)O₅, к которым через общие ребра присоединяются тригональные бипирамиды Cu(2)O₅, образуя димеры с тетрагональными пирамидами, центрированными катионами Cu(1).

Минерал	Щуровскиит	Дмисоколовит
Формула (по результатам уточнения структуры)	$K_2CaCu_6O_2(AsO_4)_4$	$K_2(K_{0.6}Na_{0.4})Cu_5(Al_{0.9}Fe_{0.1})O_2(AsO_4)_4$
Сингония; пр. гр.; Z	Моноклинная, С2; 2	Моноклинная, С2/с; 4
Параметры элементарной ячейки,	a = 17.2856(9)	a = 17.0848(12)
Å/°	$b = 5.6705(4)$ $\beta = 92.953(6)$ c = 8.5734(6)	$b = 5.7188(4)$ $\beta = 91.716(6)$ c = 16.5332(12)
V, Å ³	839.24(9)	1614.7(2)
Главные линии порошковой дифрактограммы, d,Å – I	8.61 - 100 $5.400 - 32$ $3.759 - 28$ $2.974 - 32$ $2.842 - 47$ $2.757 - 63$ $2.539 - 26$ $2.373 - 36$ $2.297 - 31$	$\begin{array}{r} 8.34 - 95 \\ 6.034 - 40 \\ 5.433 - 84 \\ 3.274 - 45 \\ 2.921 - 66 \\ 2.853 - 58 \\ 2.733 - 100 \\ 2.451 - 47 \\ 2.366 - 45 \end{array}$

Таблица 1. Некоторые кристаллографические характеристики щуровскиита и дмисоколовита.

Рис. 2. Слои из полиэдров, центрированных Си в щуровскиите (а) и Си и Al в дмисоколовите (б).
Fig. 2. Layers formed by Cu-centred polyhedra in shchurovskyite (a) and by Cu- and Al-centred polyhedra in dmisokolovite (b).

Таким образом, в структурах щуровскиита и дмисоколовита выделяются схожие слои из полиэдров, центрированных Cu (Cu и Al в дмисоколовите). В то же время, в строении слоев наблюдаются некоторые различия. Так, в структуре дмисоколовита октаэдры AlO₆ расположены на месте квадратов Cu в щуровскиите. Полиэдры, центрированные Cu(3), в обоих минералах могут рассматриваться и как октаэдры с ян-теллеровским искажением, однако в дмисоколовите это искажение существенно сильнее.

Главное отличие в структурах щуровскиита и дмисоколовита связано с различной ориентацией искаженных тетрагональных пирамид Cu(1)O₅, формирующих зигзагообразные цепочки, и, следовательно, с ориентацией димеров из Cu(1)- и Cu(2)-центрированных полиэдров в соседних слоях. В структуре щуровскиита соседние слои характеризуются одинаковой ориентацией этих полиэдров, а в дмисоколовите их ориентация в соседних слоях противоположна. AlO₆ октаэдры в структуре дмисоколовита расположены под полиэдрами Cu(3), в то время как в щуровскиите октаэдры Cu(3)O₆ и квадраты Cu(4)O₄ располагаются под эквивалентными полиэдрами в соседних слоях. Именно этим объясняется удвоение параметра *с* в структуре дмисоколовита [16.5332(12) Å] по сравнению с щуровскиитом [8.5734(6) Å].

Атомы As в структурах обоих минералов располагаются в двух кристаллографически неэквивалентных позициях и центрируют тетраэдры, роль которых различна. Тетраэдры As(1)O₄ усиливают связь между чередующимися зигзагообразными цепочками из тетрагональных пирамид Cu(1)O₅ и колонками из октаэдров и квадратов (центрированных Cu в щуровскиите / Al и Cu в дмисоколовите). Таким образом в структурах формируются гетерополиэдрические слои, связанные между собой тетраэдрами As(2)O₄, образуя гетерополиэдрический Cu(Al)-As-O псевдокаркас.

Расположение крупных катионов в структурах щуровскиита и дмисоколовита схожее. В широких каналах каркаса в обеих структурах располагаются катионы К, а узкие каналы заполнены Са в щуровскиите и К [K(2)], частично замещенным Na (с возможными примесями Cu, Mg или Zn; эта позиция может быть и частично вакансионной), в дмисоколовите.

Кристаллические структуры щуровскиита и дмисоколовита показаны на рисунке 3 (а,б).

Рис. 3. Кристаллические структуры щуровскиита (а) и дмисоколовита (б). Fig. 3. The crystal structures of shchurovskyite (a) and dmisokolovite (b).

Кристаллические структуры обоих минералов могут быть описаны и с использованием анионоцентрированных тетраэдров (Krivovichev, 2009; Krivovichev et al., 2013). Упрощенная структурная формула шуровскиита в этом случае может быть записана как $K_2Ca[Cu_6O_2][AsO_4]_4$. а дмисоколовита – как K₂(K,Na)[Cu₅AlO₂][AsO₄]₄. В структурах этих минералов выделяются изолированные друг от друга димеры из соединенных через общее ребро тетраэдров: в щуровскиите пары тетраэдров [OCu₄] дают комплексы [O₂Cu₆], а в дмисоколовите два [OCu₃Al] тетраэдра, соединяясь по ребру Cu–Al, формируют димеры [O₂Cu₅Al]. Топологически схожие анионоцентрированных тетраэдров описаны комплексы в структурах эвхлорина KNa[Cu₃O](SO₄)₃ (Scordari and Stasi, 1990), федотовита K₂[Cu₃O](SO₄)₃ (Starova et al., 1991) и двух полиморфных модификаций синтетического Cu[Cu₃O](SeO₃)₃ (Effenberger and Pertlik, 1986). Кроме того, изолированные комплексы [O₂Cu₆] установлены нами в структуре недавно открытого в эксгаляциях той же фумаролы Арсенатной криптохальцита K₂Cu₅O(SO₄)₅ (Pekov et al., 2015b).

Работа выполнена при поддержке гранта РФФИ 15-05-02051-а.

ЛИТЕРАТУРА

Effenberger, H. and Pertlik, F. (1986): Die Kristallstrukturen der Kupfer(II)-oxo-selenite $Cu_2O(SeO_3)$ (kubisch und monoklin) und $Cu_4O(SeO_3)_3$ (monoklin und triklin). Monatshefte für Chemie, 117, 887-896.

Krivovichev, S.V. Structural Crystallography of Inorganic Oxysalts. Oxford Univ. Press, 2009, New York.

Krivovichev, S.V., Mentre, O., Siidra, O.I., Colmont, M., Filatov, S.K. Anion-centered tetrahedra in inorganic compounds. Chemical Reviews, 2013, 113, 6459-6535.

Pekov I.V., Zubkova N.V., Belakovskiy D.I., Yapaskurt V.O., Vigasina M.F., Sidorov E.G., Pushcharovsky D.Yu. New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. IV. Shchurovskyite, $K_2CaCu_6O_2(AsO_4)_4$, and dmisokolovite, $K_3Cu_5AlO_2(AsO_4)_4$. Mineralogical Magazine, 2015a (in press).

Pekov, I.V., Zubkova, N.V., Agakhanov, A.A., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Y. Cryptochalcite, IMA 2014-106. CNMNC Newsletter No. 25, June 2015, page 530. Mineralogical Magazine, 2015b, 79, 529-535.

Scordari, F. and Stasi, F. The crystal structure of euchlorin, NaKCu₃O(SO₄)₃. Neues Jahrbuch für Mineralogie, Monatshefte, 1990, 241-253.

Sheldrick, G.M. A short history of SHELX. Acta Crystallographica, 2008, A64, 112-122.

Starova, G.L., Filatov, S.K., Fundamensky, V.S. and Vergasova, L.P. The crystal structure of fedotovite, K₂Cu₃O(SO₄)₃. Mineralogical Magazine, 1991, 55, 613–616.